×

Weak hypergraph regularity and applications to geometric Ramsey theory. (English) Zbl 1529.11018

Summary: Let \(\Delta =\Delta_1\times \ldots \times \Delta_d\subseteq \mathbb{R}^n\), where \(\mathbb{R}^n=\mathbb{R}^{n_1}\times \cdots \times \mathbb{R}^{n_d}\) with each \(\Delta_i\subseteq \mathbb{R}^{n_i}\) a non-degenerate simplex of \(n_i\) points. We prove that any set \(S\subseteq \mathbb{R}^n\), with \(n=n_1+\cdots +n_d\) of positive upper Banach density necessarily contains an isometric copy of all sufficiently large dilates of the configuration \(\Delta \). In particular any such set \(S\subseteq \mathbb{R}^{2d}\) contains a \(d\)-dimensional cube of side length \(\lambda \), for all \(\lambda \geq \lambda_0(S)\). We also prove analogous results with the underlying space being the integer lattice. The proof is based on a weak hypergraph regularity lemma and an associated counting lemma developed in the context of Euclidean spaces and the integer lattice.

MSC:

11B30 Arithmetic combinatorics; higher degree uniformity
05D10 Ramsey theory

References:

[1] Bourgain, J., A Szemer\'{e}di type theorem for sets of positive density in \({\mathbf{R}}^k\), Israel J. Math., 54, 3, 307-316 (1986) · Zbl 0609.10043 · doi:10.1007/BF02764959
[2] Conlon, David; Fox, Jacob; Zhao, Yufei, A relative Szemer\'{e}di theorem, Geom. Funct. Anal., 25, 3, 733-762 (2015) · Zbl 1345.11008 · doi:10.1007/s00039-015-0324-9
[3] Cook, Brian; Magyar, \'{A}kos; Pramanik, Malabika, A Roth-type theorem for dense subsets of \(\mathbb{R}^d\), Bull. Lond. Math. Soc., 49, 4, 676-689 (2017) · Zbl 1370.05210 · doi:10.1112/blms.12043
[4] Durcik, Polona; Kova\v{c}, Vjekoslav, Boxes, extended boxes and sets of positive upper density in the Euclidean space, Math. Proc. Cambridge Philos. Soc., 171, 3, 481-501 (2021) · Zbl 1476.05195 · doi:10.1017/S0305004120000316
[5] Furstenberg, H.; Katznelson, Y., An ergodic Szemer\'{e}di theorem for commuting transformations, J. Analyse Math., 34, 275-291 (1979) (1978) · Zbl 0426.28014 · doi:10.1007/BF02790016
[6] Furstenberg, Hillel; Katznelson, Yitzchak; Weiss, Benjamin, Ergodic theory and configurations in sets of positive density. Mathematics of Ramsey theory, Algorithms Combin. 5, 184-198 (1990), Springer, Berlin · Zbl 0738.28013 · doi:10.1007/978-3-642-72905-8\_13
[7] Frieze, Alan; Kannan, Ravi, The regularity lemma and approximation schemes for dense problems. 37th Annual Symposium on Foundations of Computer Science, Burlington, VT, 1996, 12-20 (1996), IEEE Comput. Soc. Press, Los Alamitos, CA · doi:10.1109/SFCS.1996.548459
[8] Gowers, W. T., Hypergraph regularity and the multidimensional Szemer\'{e}di theorem, Ann. of Math. (2), 166, 3, 897-946 (2007) · Zbl 1159.05052 · doi:10.4007/annals.2007.166.897
[9] Graham, R. L., Recent trends in Euclidean Ramsey theory, Discrete Math., 136, 1-3, 119-127 (1994) · Zbl 0816.05060 · doi:10.1016/0012-365X(94)00110-5
[10] Iosevich, A.; Rudnev, M., Erd\H{o}s distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc., 359, 12, 6127-6142 (2007) · Zbl 1145.11083 · doi:10.1090/S0002-9947-07-04265-1
[11] Kitaoka, Y., Lectures on Siegel modular forms and representation by quadratic forms, Tata Institute of Fundamental Research Lectures on Mathematics and Physics 77, vi+227 pp. (1986), Published for the Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin · Zbl 0596.10020 · doi:10.1007/978-3-662-00779-2
[12] Lyall, Neil; Magyar, \'{A}kos, Product of simplices and sets of positive upper density in \(\mathbb{R}^d\), Math. Proc. Cambridge Philos. Soc., 165, 1, 25-51 (2018) · Zbl 1411.11009 · doi:10.1017/S0305004117000184
[13] Lyall, Neil; Magyar, \'{A}kos, Distance graphs and sets of positive upper density in \(\mathbb{R}^d\), Anal. PDE, 13, 3, 685-700 (2020) · Zbl 1471.11025 · doi:10.2140/apde.2020.13.685
[14] Lyall, Neil; Magyar, \'{A}kos, Distances and trees in dense subsets of \(\mathbb{Z}^d\), Israel J. Math., 240, 2, 769-790 (2020) · Zbl 1468.11031 · doi:10.1007/s11856-020-2079-8
[15] Lyall, Neil; Magyar, \'{A}kos; Parshall, Hans, Spherical configurations over finite fields, Amer. J. Math., 142, 2, 373-404 (2020) · Zbl 1441.05221 · doi:10.1353/ajm.2020.0010
[16] Magyar, \'{A}kos, On distance sets of large sets of integer points, Israel J. Math., 164, 251-263 (2008) · Zbl 1153.11006 · doi:10.1007/s11856-008-0028-z
[17] Magyar, \'{A}kos, \(k\)-point configurations in sets of positive density of \(\mathbb{Z}^n\), Duke Math. J., 146, 1, 1-34 (2009) · Zbl 1165.05029 · doi:10.1215/00127094-2008-060
[18] Parshall, Hans, Simplices over finite fields, Proc. Amer. Math. Soc., 145, 6, 2323-2334 (2017) · Zbl 1397.05195 · doi:10.1090/proc/13493
[19] Siegel, Carl Ludwig, On the theory of indefinite quadratic forms, Ann. of Math. (2), 45, 577-622 (1944) · Zbl 0063.07006 · doi:10.2307/1969191
[20] Szemer\'{e}di, E., On sets of integers containing no \(k\) elements in arithmetic progression, Acta Arith., 27, 199-245 (1975) · Zbl 0303.10056 · doi:10.4064/aa-27-1-199-245
[21] Tao, Terence, Szemer\'{e}di’s regularity lemma revisited, Contrib. Discrete Math., 1, 1, 8-28 (2006) · Zbl 1093.05030
[22] Tao, Terence, A variant of the hypergraph removal lemma, J. Combin. Theory Ser. A, 113, 7, 1257-1280 (2006) · Zbl 1105.05052 · doi:10.1016/j.jcta.2005.11.006
[23] Tao, Terence, The ergodic and combinatorial approaches to Szemer\'{e}di’s theorem. Additive combinatorics, CRM Proc. Lecture Notes 43, 145-193 (2007), Amer. Math. Soc., Providence, RI · Zbl 1159.11005 · doi:10.1090/crmp/043/08
[24] Tao, Terence; Vu, Van, Additive combinatorics, Cambridge Studies in Advanced Mathematics 105, xviii+512 pp. (2006), Cambridge University Press, Cambridge · Zbl 1127.11002 · doi:10.1017/CBO9780511755149
[25] Ziegler, Tamar, Nilfactors of \(\mathbb{R}^m\)-actions and configurations in sets of positive upper density in \(\mathbb{R}^m\), J. Anal. Math., 99, 249-266 (2006) · Zbl 1145.37005 · doi:10.1007/BF02789447
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.