×

Existence of solutions for a coupled system of fractional differential equations by means of topological degree theory. (English) Zbl 1494.34065


MSC:

34A08 Fractional ordinary differential equations
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
26A33 Fractional derivatives and integrals

References:

[1] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), The Netherlands: Elsevier, The Netherlands · Zbl 1092.45003
[2] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[3] Freed, A. D.; Diethelm, K., Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional-derivative kernels with application to the human calcaneal fat pad, Biomech. Model. Mechanobiol., 5, 203-215 (2006) · doi:10.1007/s10237-005-0011-0
[4] Magin, R. L., Fractional calculus in bioengineering, part 1, Crit. Rev. Biomed. Eng., 32, 1-104 (2004) · doi:10.1615/CritRevBiomedEng.v32.10
[5] Ge, Z. M.; Ou, C. Y., Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal, Chaos Solitons Fractals, 35, 705-717 (2008) · doi:10.1016/j.chaos.2006.05.101
[6] Sokolov, I. M.; Klafter, J.; Blumen, A., Fractional kinetics, Phys. Today, 55, 48-55 (2002) · doi:10.1063/1.1535007
[7] Petrá, I.; Magin, R. L., Simulation of drug uptake in a two compartmental fractional model for a biological system, Commun. Nonlinear Sci. Numer. Simul., 16, 4588-4595 (2011) · Zbl 1229.92043 · doi:10.1016/j.cnsns.2011.02.012
[8] Xie, D. P.; Bai, C. Z.; Liu, Y., Positive solutions for a coupled system of semipositone fractional differential equations with the integral boundary conditions, Eur. Phys. J. Spec. Top., 226, 3551-3566 (2017) · doi:10.1140/epjst/e2018-00041-3
[9] Zhang, X. Q.; Wang, L.; Sun, Q., Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter, J. Appl. Math. Comput., 226, 708-718 (2014) · Zbl 1354.34049 · doi:10.1016/j.amc.2013.10.089
[10] Sun, Q.; Ji, H. W.; Cui, Y. J., Positive solutions for boundary value problems of fractional differential equation with integral boundary conditions, J. Funct. Spaces, 2018 (2018) · Zbl 1391.34018
[11] Wang, Y.; Liu, L. S.; Wu, Y. H., Positive solutions for a class of higher-order singular semipositone fractional differential systems with coupled integral boundary conditions and parameters, Adv. Differ. Equ., 2014 (2014) · Zbl 1417.34062 · doi:10.1186/1687-1847-2014-268
[12] Yang, W. G., Positive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Nonlinear Sci. Appl., 8, 110-129 (2015) · Zbl 1319.34019 · doi:10.22436/jnsa.008.02.04
[13] Jiang, J. Q.; Liu, W. W.; Wang, H. C., Positive solutions for higher order nonlocal fractional differential equation with integral boundary conditions, J. Funct. Spaces, 2018, 1-12 (2018) · Zbl 1405.34010
[14] Ali, I.; Haq, S.; Nisar, K. S.; Baleanu, D., An efficient numerical scheme based on Lucas polynomials for the study of multidimensional Burgers-type equations, Adv. Differ. Equ., 2021 (2021) · Zbl 1487.65162 · doi:10.1186/s13662-020-03160-4
[15] Xie, J. L.; Duan, L. J., Existence of solutions for fractional differential equations with p-Laplacian operator and integral boundary conditions, J. Funct. Spaces, 100, 1-7 (2020) · Zbl 1444.35083
[16] Seemab, A.; Rehman, M. U.; Alzabut, J.; Hamdi, A., On the existence of positive solutions for generalized fractional boundary value problems, Bound. Value Probl., 2019 (2019) · Zbl 1513.34116 · doi:10.1186/s13661-019-01300-8
[17] Zhao, K. H.; Gong, P., Positive solutions for impulsive fractional differential equations with generalized periodic boundary value conditions, Adv. Differ. Equ., 2014 (2014) · Zbl 1343.34057 · doi:10.1186/1687-1847-2014-255
[18] Yang, C.; Zhai, C. B.; Zhang, L. L., Local uniqueness of positive solutions for a coupled system of fractional differential equations with integral boundary conditions, Adv. Differ. Equ., 2017 (2017) · Zbl 1422.34072 · doi:10.1186/s13662-017-1343-7
[19] Zhang, W.; Liu, W. B., Existence of solutions for several higher-order Hadamard-type fractional differential equations with integral boundary conditions on infinite interval, Bound. Value Probl., 2018 (2018) · Zbl 1499.34089 · doi:10.1186/s13661-018-1053-4
[20] Liu, Z. H.; Ding, Y. Z.; Liu, C. W.; Zhao, C. Y., Existence and uniqueness of solutions for singular fractional differential equation boundary value problem with p-Laplacian, Bound. Value Probl., 2020 (2020) · doi:10.1186/s13661-020-01381-w
[21] Zhang, W.; Ni, J. B., New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval, Appl. Math. Lett., 118 (2021) · Zbl 1483.34044 · doi:10.1016/j.aml.2021.107165
[22] Sher, M.; Shah, K.; Feckan, M.; Khan, R. A., Qualitative analysis of multi-terms fractional order delay differential equations via the topological degree theory, Mathematics, 8 (2020) · doi:10.3390/math8020218
[23] Bashiri, T.; Vaezpour, S. M.; Park, C., A coupled fixed point theorem and application to fractional hybrid differential problems, Fixed Point Theory Appl., 2016 (2016) · Zbl 1505.34009 · doi:10.1186/s13663-016-0511-x
[24] Ahmad, I.; Shah, K.; Rahman, G. U.; Baleanu, D., Stability analysis for a nonlinear coupled system of fractional hybrid delay differential equations, Math. Methods Appl. Sci., 43, 15, 8669-8682 (2020) · Zbl 1457.34114 · doi:10.1002/mma.6526
[25] Muthaiah, S.; Baleanu, D.; Thangaraj, N. G., Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations, AIMS Math., 6, 1, 168-194 (2021) · Zbl 1484.34035 · doi:10.3934/math.2021012
[26] Deimling, K., Nonlinear Functional Analysis (1980) · Zbl 0559.47040
[27] Isaia, F., On a nonlinear integral equation without compactness, Acta Math. Univ. Comen., 75, 233-240 (2006) · Zbl 1164.45305
[28] Shah, K.; Khan, P. A., Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti periodic boundary conditions, Differ. Equ. Appl., 7, 245-262 (2015) · Zbl 1336.47071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.