×

On the existence of positive solutions for generalized fractional boundary value problems. (English) Zbl 1513.34116

Summary: The existence of positive solutions is established for boundary value problems defined within generalized Riemann-Liouville and Caputo fractional operators. Our approach is based on utilizing the technique of fixed point theorems. For the sake of converting the proposed problems into integral equations, we construct Green functions and study their properties for three different types of boundary value problems. Examples are presented to demonstrate the validity of theoretical findings.

MSC:

34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34B27 Green’s functions for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations

References:

[1] Abdo, M. S.; Panchal, S. K., Fractional integro-differential equations involving φ-Hilfer fractional derivative, Adv. Appl. Math., 11, 1-22 (2019) · Zbl 1488.45022
[2] Almeida, R., A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44, 460-481 (2017) · Zbl 1465.26005 · doi:10.1016/j.cnsns.2016.09.006
[3] Almeida, R., Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Soc., 2017, 1-11 (2017) · Zbl 1364.35425
[4] Almeida, R.; Malinowska, A. B.; Monteiro, M. T.T., Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications, Math. Methods Appl. Sci., 41, 336-352 (2018) · Zbl 1384.34010 · doi:10.1002/mma.4617
[5] Babakhani, A.; Daftardar-Gejji, V., Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl., 278, 434-442 (2003) · Zbl 1027.34003 · doi:10.1016/S0022-247X(02)00716-3
[6] Bachar, I.; Maagli, H.; Radulescu, V. D., Fractional Navier boundary value problems, Bound. Value Probl., 2016 (2016) · Zbl 1343.34009 · doi:10.1186/s13661-016-0586-7
[7] Bai, Z., On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., 72, 916-924 (2010) · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[8] Bai, Z.; Lu, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[9] Benchohra, M.; Hamani, S.; Ntouyas, S. K., Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal., 71, 2391-2396 (2009) · Zbl 1198.26007 · doi:10.1016/j.na.2009.01.073
[10] Berhail, A.; Bouache, N.; Matar, M. M.; Alzabut, J., On nonlocal integral and derivative boundary value problem of nonlinear Hadamard Langevin equation with three different fractional orders, Bol. Soc. Mat. Mexicana (2019) · Zbl 1446.34010 · doi:10.1007/s40590-019-00257-z
[11] Denton, Z.; Ramirez, J. D., Existence of minimal and maximal solutions to RL fractional integro-differential initial value problems, Opusc. Math., 37, 5, 705-724 (2017) · Zbl 1513.45021 · doi:10.7494/OpMath.2017.37.5.705
[12] Guliyev, V. S.; Omarova, M. N.; Ragusa, M. A.; Scapellato, A., Commutators and generalized local Morrey spaces, J. Math. Anal. Appl., 457, 2, 1388-1402 (2018) · Zbl 1376.42021 · doi:10.1016/j.jmaa.2016.09.070
[13] Guo, D.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones (1988), Boston: Academic Press, Boston · Zbl 0661.47045
[14] Harikrishnan, S., Kamal, S., Kanagarajan, K.: Study of a boundary value problem for fractional order ψ-Hilfer fractional derivative. Arab. J. Math., 1-8 (2019) · Zbl 1456.34005
[15] He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y., A singular fractional Kelvin-Voigt model involving a nonlinear operator and their convergence properties, Bound. Value Probl., 2019 (2019) · Zbl 1513.34024 · doi:10.1186/s13661-019-1228-7
[16] Jarad, F.; Abdeljawad, T.; Alzabut, A., Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226, 3457-3471 (2017) · doi:10.1140/epjst/e2018-00021-7
[17] Katugampola, U. N., A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6, 4, 1-15 (2014) · Zbl 1317.26008
[18] Kober, H., On fractional integrals and derivatives, Q. J. Math., 11, 1, 193-211 (1940) · Zbl 0025.18502 · doi:10.1093/qmath/os-11.1.193
[19] Leggett, R. W.; Williams, L. R., Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28, 673-688 (1979) · Zbl 0421.47033 · doi:10.1512/iumj.1979.28.28046
[20] Li, M.; Wang, J., Existence of local and global solutions for Hadamard fractional differential equations, Electron. J. Differ. Equ., 2015 (2015) · Zbl 1422.92176 · doi:10.1186/s13662-015-0436-4
[21] Lyons, J. W.; Neugebauer, J. T., Positive solutions of a singular fractional boundary value problem with a fractional boundary condition, Opusc. Math., 37, 3, 421-434 (2017) · Zbl 1368.34012 · doi:10.7494/OpMath.2017.37.3.421
[22] Molica Bisci, G.; Radulescu, V. D., Multiplicity results for elliptic fractional equations with subcritical term, Nonlinear Differ. Equ. Appl., 22, 4, 721-739 (2015) · Zbl 1322.49025 · doi:10.1007/s00030-014-0302-1
[23] Oliveira, D. S.; Capelas De Oliveira, E., Hilfer-Katugampola fractional derivatives, J. Comput. Appl. Math., 37, 3672-3690 (2018) · Zbl 1401.26014
[24] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0918.34010
[25] Ragusa, M. A., Necessary and sufficient condition for a VMO function, Appl. Math. Comput., 218, 24, 11952-11958 (2012) · Zbl 1280.42019
[26] Scapellato, A., Homogeneous Herz spaces with variable exponents and regularity results, Electron. J. Qual. Theory Differ. Equ., 2018 (2018) · Zbl 1445.37062 · doi:10.1186/s13662-018-1535-9
[27] Scapellato, A., Regularity of solutions to elliptic equations on Herz spaces with variable exponents, Bound. Value Probl., 2019 (2019) · Zbl 1513.42102 · doi:10.1186/s13661-018-1116-6
[28] Subashini, R.; Jothimani, K.; Saranya, S.; Ravichandran, C., On the results of Hilfer fractional derivative with nonlocal conditions, Int. J. Pure Appl. Math., 118, 11, 277-289 (2018)
[29] Wang, J.; Dong, X.; Zhou, Y., Analysis of nonlinear integral equations with Erdelyi-Kober fractional operator, Commun. Nonlinear Sci. Numer. Simul., 17, 3129-3139 (2012) · Zbl 1298.45011 · doi:10.1016/j.cnsns.2011.12.002
[30] Yang, Y.; Meng, F., Positive solutions for nonlocal boundary value problems of fractional differential equation, WSEAS Trans. Math., 12, 1154-1163 (2013)
[31] Zada, A.; Waheed, H.; Alzabut, J.; Wang, X., Existence and stability of impulsive coupled system of fractional integro-differential equations, Demonstr. Math., 52, 296-335 (2019) · Zbl 1439.45010 · doi:10.1515/dema-2019-0035
[32] Zhang, S., Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Equ., 2006 (2006) · Zbl 1134.39008 · doi:10.1155/ADE/2006/90479
[33] Zhang, X.; Liu, L.; Wu, Y., Multiple positive solutions of a singular fractional differential equation with negatively perturbed term, Math. Comput. Model., 55, 1263-1274 (2012) · Zbl 1255.34010 · doi:10.1016/j.mcm.2011.10.006
[34] Zhao, Y.; Chen, H.; Huang, L., Existence of positive solutions for nonlinear fractional functional differential equation, Comput. Math. Appl., 64, 3456-3467 (2012) · Zbl 1277.34111 · doi:10.1016/j.camwa.2012.01.081
[35] Zhou, H.; Alzabut, J.; Yang, L., On fractional Langevin differential equations with anti-periodic boundary conditions, Eur. Phys. J. Spec. Top., 226, 3577-3590 (2017) · doi:10.1140/epjst/e2018-00082-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.