×

Gradient recovery type a posteriori error estimates of virtual element method for an elliptic variational inequality of the second kind. (English) Zbl 07698302

Summary: In this paper, gradient recovery type a posteriori error estimators of virtual element discretization are derived for a simplified friction problem, which is a typical elliptic variational inequality of the second kind. Both the reliability and the efficiency of the error estimators are proved. In addition, one numerical example is presented to show the efficiency of the adaptive VEM based on the derived error estimators.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
74Mxx Special kinds of problems in solid mechanics
74Sxx Numerical and other methods in solid mechanics

Software:

FEALPy; GitHub
Full Text: DOI

References:

[1] Duvaut, G.; Lions, J.-L., Inequalities in Mechanics and Physics (1976), Springer: Springer Berlin · Zbl 0331.35002
[2] Han, W.; Sofonea, M., Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity (2002), American Mathematical Society and International Press: American Mathematical Society and International Press USA · Zbl 1013.74001
[3] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods (1988), SIAM: SIAM Philadelphia · Zbl 0685.73002
[4] Wang, F.; Ling, M.; Han, W.; Jing, F., Adaptive discontinuous Galerkin methods for solving an incompressible Stokes flow problem with slip boundary condition of frictional type, J. Comput. Appl. Math., 371, Article 112270 pp. (2020) · Zbl 1434.65278
[5] Han, W.; Ling, M.; Wang, F., Numerical solution of an H(curl)-elliptic hemivariational inequality, IMA J. Numer. Anal. (2022)
[6] Djoko, J. K.; Ebobisse, F.; McBride, A. T.; Reddy, B. D., A discontinuous Galerkin formulation for classical and gradient plasticity - Part 1: Formulation and analysis, Comput. Methods Appl. Mech. Engrg., 196, 3881-3897 (2007) · Zbl 1173.74410
[7] Wang, F.; Han, W.; Cheng, X., Discontinuous Galerkin methods for solving elliptic variational inequalities, SIAM J. Numer. Anal., 48, 708-733 (2010) · Zbl 1214.65039
[8] Wang, F.; Han, W.; Cheng, X., Discontinuous Galerkin methods for solving Signorini problem, IMA J. Numer. Anal., 31, 1754-1772 (2011) · Zbl 1315.74021
[9] Wang, F.; Han, W.; Cheng, X., Discontinuous Galerkin methods for solving the quasistatic contact problem, Numer. Math., 126, 771-800 (2014) · Zbl 1431.74106
[10] Wang, F.; Han, W.; Eichholz, J.; Cheng, X., A posteriori error estimates for discontinuous Galerkin methods of obstacle problems, Nonlinear Anal. RWA, 22, 664-679 (2015) · Zbl 1304.65163
[11] Cascavita, K. L.; Chouly, F.; Ern, A., Hybrid high-order discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary conditions, IMA J. Numer. Anal., 40, 2189-2226 (2020) · Zbl 1466.65183
[12] Chouly, F.; Ern, A.; Pignet, N., A hybrid high-order discretization combined with Nitsche’s method for contact and Tresca friction in small strain elasticity, SIAM J. Sci. Comput., 42, A2300-A2324 (2020) · Zbl 1452.65328
[13] Cicuttin, M.; Ern, A.; Gudi, T., Hybrid high-order methods for the elliptic obstacle problem, J. Sci. Comput., 83, 8 (2020) · Zbl 1436.65176
[14] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual elements methods, Math. Models Methods Appl. Sci., 23, 199-214 (2013) · Zbl 1416.65433
[15] Ahmad, B.; Alsaedi, A.; Brezzi, F.; Marini, L. D.; Russo, A., Equivalent projectors for virtual element methods, Comput. Math. Appl., 66, 376-391 (2013) · Zbl 1347.65172
[16] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., Virtual element methods for general second order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci., 26, 729-750 (2016) · Zbl 1332.65162
[17] Beirão da Veiga, L.; Manzini, G., Residual a posteriori error estimation for the virtual element method for elliptic problems, ESAIM: M2AN, 49, 577-599 (2015) · Zbl 1346.65056
[18] Berrone, S.; Borio, A., A residual a posteriori error estimate for the virtual element method, Math. Models Methods Appl. Sci., 27, 1423-1458 (2017) · Zbl 1376.65136
[19] Cangiani, A.; Georgoulis, E. H.; Pryer, T.; Sutton, O. J., A posteriori error estimates for the virtual element method, Numer. Math., 137, 857-893 (2017) · Zbl 1384.65079
[20] Chi, H.; Beirão da Veiga, L.; Paulino, G. H., A simple and effective gradient recovery scheme and a posteriori error estimator for the virtual element method, Comput. Methods Appl. Mech. Engrg., 347, 21-58 (2019) · Zbl 1440.65194
[21] Wang, L., Recovery Type a Posteriori Error Estimation for Adaptive Virtual Element Method (2019), Xiangtan University, (Master thesis)
[22] Wriggers, P.; Rust, W. T.; Reddy, B. D., A virtual element method for contact, Comput. Mech., 58, 1039-1050 (2016) · Zbl 1398.74420
[23] Wang, F.; Wei, H., Virtual element method for simplified friction problem, Appl. Math. Lett., 85, 125-131 (2018) · Zbl 1524.65864
[24] Wang, F.; Wei, H., Virtual element methods for obstacle problem, IMA J. Numer. Anal., 40, 708-728 (2020) · Zbl 1462.65202
[25] Feng, F.; Han, W.; Huang, J., Virtual element methods for elliptic variational inequalities of the second kind, J. Sci. Comput., 80, 60-80 (2019) · Zbl 1419.49014
[26] Wang, F.; Zhao, J., Conforming and nonconforming virtual element methods for a Kirchhoff plate contact problem, IMA J. Numer. Anal., 41, 1496-1521 (2021) · Zbl 1511.65129
[27] Atkinson, K.; Han, W., Theoretical Numerical Analysis: A Functional Analysis Framework (2009), Springer-Verlag: Springer-Verlag New York · Zbl 1181.47078
[28] Bostan, V.; Han, W., Recovery-based error estimation and adaptive solution of elliptic variational inequalities of the second kind, Commun. Math. Sci., 2, 1-18 (2004) · Zbl 1084.35025
[29] Bostan, V.; Han, W.; Reddy, B. D., A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind, Appl. Numer. Math., 52, 13-38 (2004) · Zbl 1069.65067
[30] Bostan, V.; Han, W., A posteriori error analysis for finite element solutions of a contact problem with friction, Comput. Methods Appl. Mech. Engrg., 195, 1252-1274 (2006) · Zbl 1115.74047
[31] Dörsek, P.; Melenk, J. M., Adaptive hp-FEM for the contact problem with Tresca friction in linear elasticity: the primal-dual formulation and a posteriori error estimation, Appl. Numer. Math., 60, 689-704 (2010) · Zbl 1306.74036
[32] Wang, F.; Han, W., Another view for a posteriori error estimates for variational inequalities of the second kind, Appl. Numer. Math., 72, 225-233 (2013) · Zbl 1302.65159
[33] Chouly, F.; Fabre, M.; Hild, P.; Pousin, J.; Renard, Y., Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method, IMA J. Numer. Anal., 38, 921-954 (2018) · Zbl 1477.65204
[34] Wang, F.; Han, W., Reliable and efficient a posteriori error estimates of DG methods for a simplified frictional contact problem, Int. J. Numer. Anal. Model., 16, 49-62 (2019) · Zbl 1412.65193
[35] Deng, Y.; Wang, F.; Wei, H., A posteriori error estimates of virtual element method for a simplified friction problem, J. Sci. Comput., 83, 52 (2020) · Zbl 1442.65360
[36] Beirão da Veiga, L.; Lovadina, C.; Russo, A., Stability analysis for the virtual element method, Math. Models Methods Appl. Sci., 27, 2557-2594 (2017) · Zbl 1378.65171
[37] Cangiani, A.; Manzini, G.; Sutton, O. J., Conforming and nonconforming virtual element methods for elliptic problems, IMA J. Numer. Anal., 37, 1317-1354 (2017) · Zbl 1433.65282
[38] Chen, L.; Huang, J., Some error analysis on virtual element methods, Calcolo, 55, 5 (2018) · Zbl 1448.65223
[39] WeiBer, S., Residual based error estimate and quasi-interpolation on polygonal meshes for high order BEM-based FEM, Comput. Math. Appl., 73, 187-202 (2017) · Zbl 1368.65238
[40] Ainsworth, M.; Oden, T. J., A Posteriori Error Estimation in Finite Element Analysis (2000), Wiley: Wiley Chichester · Zbl 1008.65076
[41] Glowinski, R., Numerical Methods for Nonlinear Variational Problems (1984), Springer-Verlag: Springer-Verlag New York · Zbl 0575.65123
[42] Wei, H.; Chen, C.; Huang, Y., FEALPy: Finite Element Analysis Library in Python (2017), Xiangtan University, https://github.com/weihuayi/fealpy
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.