×

An explicit and positivity preserving numerical scheme for the mean reverting CEV model. (English) Zbl 1323.60087

Summary: In this paper, we propose an explicit and positivity preserving scheme for the mean reverting constant elasticity of variance model which converges in the mean square sense with convergence order \(a(a-1/2)\).

MSC:

60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
65C30 Numerical solutions to stochastic differential and integral equations

References:

[1] Alfonsi, A.: Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process. Stat. Probab. Lett. 83(2), 602-607 (2013) · Zbl 1273.65007 · doi:10.1016/j.spl.2012.10.034
[2] Andersen, L.: Simple and efficient simulation of the Heston stochastic volatility model. J. Comput. Financ. 11(3), 1-42 (2008)
[3] Berkaoui, A., Bossy, M., Diop, A.: Euler scheme for SDEs with non-Lipchitz diffusion coefficient: strong convergence. ESAIM 12, 1-11 (2008) · Zbl 1183.65004 · doi:10.1051/ps:2007030
[4] Gyongy, I., Rasonyi, M.: A note on Euler approximations for SDEs with Holder continuous diffusion coefficients. Stoch. Process. Appl. 121, 2189-2200 (2011) · Zbl 1226.60095 · doi:10.1016/j.spa.2011.06.008
[5] Halidias, N.: Semi-discrete approximations for stochastic differential equations and applications, Int. J. Comput. Math. 89, 780-794 (2012) · Zbl 1255.65020
[6] Halidias, N.: Construction of positivity preserving numerical schemes for a class of multidimensional stochastic differential equations. Discret. Contin. Dyn. Syst. 20, 153-160 (2015) · Zbl 1325.65017
[7] Halidias, N.: A novel approach to construct numerical methods for stochastic differential equations. Numer. Algorithms 66(1), 79-87 (2014) · Zbl 1298.65013 · doi:10.1007/s11075-013-9724-9
[8] Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, New York (1991) · Zbl 0734.60060
[9] Hurd, T.R., Kuznetsov, A.: Explicit formulas for Laplace transforms of stochastic integrals. Markov Process. Relat. Fields 14, 277-290 (2008) · Zbl 1149.60021
[10] Mitrinovic, D.S., Pecaric, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer, Dordrecht (1991) · Zbl 0744.26011 · doi:10.1007/978-94-011-3562-7
[11] Yamada, T., Watanabe, S.: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155-167 (1971) · Zbl 0236.60037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.