×

Semi-discrete approximations for stochastic differential equations and applications. (English) Zbl 1255.65020

Summary: We propose a new point of view in numerical approximation of stochastic differential equations. By using Ito-Taylor expansions, we expand only a part of the stochastic differential equation. Thus, in each step, we have again a stochastic differential equation which we solve explicitly or by using another method or a finer mesh. We call our approach as a semi-discrete approximation. We give two applications of this approach. Using the semi-discrete approach, we can produce numerical schemes which preserves monotonicity so in our first application, we prove that the semi-discrete Euler scheme converge in the mean square sense even when the drift coefficient is only continuous, using monotonicity arguments. In our second application, we study the square root process which appears in financial mathematics. We observe that a semi-discrete scheme behaves well producing non-negative values.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] DOI: 10.1515/156939605777438569 · Zbl 1100.65007 · doi:10.1515/156939605777438569
[2] DOI: 10.1007/BF01246336 · Zbl 0844.60031 · doi:10.1007/BF01246336
[3] DOI: 10.1080/17442508408833303 · Zbl 0543.60065 · doi:10.1080/17442508408833303
[4] Carmona R., Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective (2006) · Zbl 1124.91030
[5] Cherny A., Singular Stochastic Differential Equations (2005) · Zbl 1071.60003 · doi:10.1007/b104187
[6] DOI: 10.2307/1911242 · Zbl 1274.91447 · doi:10.2307/1911242
[7] DOI: 10.1007/s00211-005-0611-8 · Zbl 1186.65010 · doi:10.1007/s00211-005-0611-8
[8] Higham D., J. Comput. Finance 8 pp 35– (2005) · doi:10.21314/JCF.2005.136
[9] DOI: 10.1137/S0036142901389530 · Zbl 1026.65003 · doi:10.1137/S0036142901389530
[10] DOI: 10.1007/978-1-4612-0949-2 · doi:10.1007/978-1-4612-0949-2
[11] Kloeden P., Numerical Solution of Stochastic Differential Equations (1999)
[12] DOI: 10.1016/S0167-7152(96)00103-4 · Zbl 0904.60042 · doi:10.1016/S0167-7152(96)00103-4
[13] Milstein G., Stochastic Numerics for Mathematical Physics (2004) · Zbl 1085.60004 · doi:10.1007/978-3-662-10063-9
[14] DOI: 10.1137/05063725X · Zbl 1149.65008 · doi:10.1137/05063725X
[15] DOI: 10.1007/978-3-642-13694-8 · Zbl 1225.60004 · doi:10.1007/978-3-642-13694-8
[16] Schurz H., Dynam. Systems Appl. 5 pp 323– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.