×

Information quantifiers, entropy squeezing and entanglement properties of superconducting qubit-deformed bosonic field system under dephasing effect. (English) Zbl 1387.81098

Summary: In this paper, we present a detailed study on the evolution of some measures of nonclassicality and entanglement in the framework of the interaction between a superconducting qubit and deformed bosonic fields under decoherence effect. We compare the dynamical behavior of the different quantum quantifiers by exploiting a large set of nonlinear bosonic fields that are characterized by the deformation parameter. Additionally, we demonstrate how the connection between the appearance of the nonlinearity in the deformed field and the quantum information quantifiers. The time correlation between entropy squeezing, purity, and entanglement is examined in terms of the physical parameters involved in the whole system. Lastly, we explore the exact ranges of the physical parameters in order to combat the decoherence effect and maintain high amount of entanglement during the time evolution.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
94A17 Measures of information, entropy
82D55 Statistical mechanics of superconductors
81S22 Open systems, reduced dynamics, master equations, decoherence
81P40 Quantum coherence, entanglement, quantum correlations
Full Text: DOI

References:

[1] Ingold, G.; Nazarov, Y.; Grabert, H. (ed.); Devoret, MH (ed.), Effect of the electromagnetic environment on single charge tunneling, No. 294, 21 (1992), New York · doi:10.1007/978-1-4757-2166-9_2
[2] Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010) · Zbl 1205.81001 · doi:10.1103/RevModPhys.82.1155
[3] Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011) · doi:10.1088/0034-4885/74/10/104401
[4] Hirata, K., Ooi, S., Yu, S., Sadki, E.H., Mochiku, T.: Novel magnetic sensors using high \[T_cTc\] superconductors. Supercond. Sci. Technol. 17, 432 (2004) · doi:10.1088/0953-2048/17/5/069
[5] Voss, R.F., Webb, R.A.: Phase coherence in a weakly coupled array of 20 000 Nb Josephson junctions. Phys. Rev. B 25, 3446 (1982) · doi:10.1103/PhysRevB.25.3446
[6] Nahum, M., Eiles, T.M., Martinis, J.M.: Electronic microrefrigerator based on a normal-insulator-superconductor tunnel junction. Appl. Phys. Lett. 65, 3123 (1994) · doi:10.1063/1.112456
[7] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Series on Information and the Natural Sciences. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[8] Eichler, C., Lang, C., Fink, J.M., Govenius, J., Filipp, S., Wallraff, A.: Observation of entanglement between itinerant microwave photons and a superconducting qubit. Phys. Rev. Lett. 109, 240501 (2012) · Zbl 1289.37017 · doi:10.1103/PhysRevLett.109.240501
[9] Drummond, P.D., Ficek, Z.: Quantum Squeezing. Springer, Berlin (2004) · Zbl 1068.81645 · doi:10.1007/978-3-662-09645-1
[10] Wodkiewicz, K.: Reduced quantum fluctuations in the Josephson junction. Phys. Rev. B 32, 4750 (1981) · doi:10.1103/PhysRevB.32.4750
[11] Agarwal, G.S., Puri, R.R.: Cooperative behavior of atoms irradiated by broadband squeezed light. Phys. Rev. A 41, 3782 (1990) · doi:10.1103/PhysRevA.41.3782
[12] Ashraf, M.M., Razmi, M.S.K.: Atomic-dipole squeezing and emission spectra of the nondegenerate two-photon Jaynes-Cummings model. Phys. Rev. A 45, 8121 (1992) · doi:10.1103/PhysRevA.45.8121
[13] Kitagawa, M., Ueda, M.: Squeezed spin states. Phys. Rev. A 47, 5138 (1993) · doi:10.1103/PhysRevA.47.5138
[14] Civitarese, O., Reboiro, M.: Atomic squeezing in three level atoms. Phys. Lett. A 357, 224 (2006) · Zbl 1277.81031 · doi:10.1016/j.physleta.2006.04.043
[15] Civitarese, O., Reboiro, M., Rebón, L., Tielas, D.: Atomic squeezing in three-level atoms with effective dipole-dipole atomic interaction. Phys. Lett. A 374, 2117 (2010) · Zbl 1237.81097 · doi:10.1016/j.physleta.2010.03.013
[16] Poulsen, U.V., MÃÿlmer, K.: Squeezed light from spin-squeezed atoms. Phys. Rev. Lett. 87, 123601 (2001) · doi:10.1103/PhysRevLett.87.123601
[17] Yukalov, V.I., Yukalova, E.P.: Atomic squeezing under collective emission. Phys. Rev. A 70, 053828 (2004) · doi:10.1103/PhysRevA.70.053828
[18] Wang, X.: Spin squeezing in nonlinear spin-coherent states. J. Opt. B Quantum Semiclass. Opt. 3, 93 (2001) · doi:10.1088/1464-4266/3/3/304
[19] Rojo, A.G.: Optimally squeezed spin states. Phys. Rev. A 68, 013807 (2003) · doi:10.1103/PhysRevA.68.013807
[20] Wang, X., Sanders, B.C.: Relations between bosonic quadrature squeezing and atomic spin squeezing. Phys. Rev. A 68, 033821 (2003) · doi:10.1103/PhysRevA.68.033821
[21] Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954) · Zbl 0055.21702 · doi:10.1103/PhysRev.93.99
[22] El-Oranya, F.A.A., Wahiddinb, M.R.B., Obada, A.-S.F.: Single-atom entropy squeezing for two two-level atoms interacting with a single-mode radiation field. Opt. Commun. 281, 2854 (2008) · doi:10.1016/j.optcom.2008.01.051
[23] Kuzmich, A., Molmer, K., Polzik, E.S.: Spin squeezing in an ensemble of atoms illuminated with squeezed light. Phys. Rev. Lett. 79, 4782 (1997) · doi:10.1103/PhysRevLett.79.4782
[24] Sanchez-Ruiz, J.: Improved bounds in the entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 201, 125 (1995) · Zbl 1020.81542 · doi:10.1016/0375-9601(95)00219-S
[25] Wu, R.B., et al.: Spectral analysis and identification of noises in quantum systems. Phys. Rev. A 87, 022324 (2013) · doi:10.1103/PhysRevA.87.022324
[26] Liu, Y.X., Wei, L.F., Nori, F.: Tomographic measurements on superconducting qubit states. Phys. Rev. B 72, 014547 (2005) · doi:10.1103/PhysRevB.72.014547
[27] Childs, A.M., Chuang, I.L., Leung, D.W.: Realization of quantum process tomography in NMR. Phys. Rev. A 64, 012314 (2001) · doi:10.1103/PhysRevA.64.012314
[28] Agarwal, G.S., Puri, R.R.: Exact quantum-electrodynamics results for scattering, emission, and absorption from a Rydberg atom in a cavity with arbitrary Q. Phys. Rev. A 33, 1757 (1986) · doi:10.1103/PhysRevA.33.1757
[29] Daeubler, B., Risken, H., Schoendorff, L.: Analytic solution for inversion and intensity of the Jaynes-Cummings model with cavity damping. Phys. Rev. A 46, 1654 (1992) · doi:10.1103/PhysRevA.46.1654
[30] Kuang, L.-M., Chen, X., Chen, G.-H., Mo-Lin, G.: Jaynes-Cummings model with phase damping. Phys. Rev. A 56, 3139 (1997) · doi:10.1103/PhysRevA.56.3139
[31] Breuer, H.-P., Dorner, U., Petruccione, F.: Numerical integration methods for stochastic wave function equations. Comput. Phys. Commun. 132, 30 (2000) · Zbl 0967.65003 · doi:10.1016/S0010-4655(00)00135-1
[32] Chuang, I.L., Yamamoto, Y.: Creation of a persistent quantum bit using error correction. Phys. Rev. A 55, 114 (1997) · doi:10.1103/PhysRevA.55.114
[33] Palma, G.M., Suominen, K., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. Ser. A 452, 567 (1996) · Zbl 0870.68066 · doi:10.1098/rspa.1996.0029
[34] Makhlin, Y., Schon, G., Shnirman, A.: Josephson-junction qubits with controlled couplings. Nature 398, 305 (1999) · doi:10.1038/18613
[35] Blais, A., Huang, R.-S., Wallraff, A., Girvin, S., Schoelkopf, R.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004) · doi:10.1103/PhysRevA.69.062320
[36] Abdel-Khalek, S., Berrada, K., Eleuch, H.: Effect of the time-dependent coupling on a superconducting qubit-field system under decoherence: entanglement and Wehrl entropy. Ann. Phys. 361, 247 (2015) · doi:10.1016/j.aop.2015.06.015
[37] Berrada, K., Abdel-Khalek, S., Obada, A.-S.F.: Quantum Fisher information for a qubit system placed inside a dissipative cavity. Phys. Lett. A 376, 1412 (2012) · Zbl 1260.81013 · doi:10.1016/j.physleta.2012.03.023
[38] Yoshihara, F., Harrabi, K., Niskanen, A.O., Nakamura, Y., Tsai, J.S.: Decoherence of flux qubits due to \[1/f1\]/f flux noise. Phys. Rev. Lett. 97, 167001 (2006) · doi:10.1103/PhysRevLett.97.167001
[39] Dey, A., Yarlagadda, S.: Polaron dynamics and decoherence in an interacting two-spin system coupled to an optical-phonon environment. Phys. Rev. B 89, 064311 (2014) · doi:10.1103/PhysRevB.89.064311
[40] Sharma, S., Rajak, A.: Study of Loschmidt echo for two-dimensional Kitaev model. J. Stat. Mech. Theory Exp. 08, 08005 (2012) · doi:10.1088/1742-5468/2012/08/P08005
[41] Nag, T., Divakaran, U., Dutta, A.: Scaling of the decoherence factor of a qubit coupled to a spin chain driven across quantum critical points. Phys. Rev. B 86, 020401 (2012) · doi:10.1103/PhysRevB.86.020401
[42] Rajak, A., Divakaran, U.: Effect of double local quenches on Loschmidt echo and entanglement entropy of a one-dimensional quantum system. arXiv: 1507.00963 (2015) · Zbl 1456.82070
[43] Biedenharn, L.C.: The quantum group \[SU_q(2)\] SUq(2) and a q-analogue of the boson operators. J. Phys. A. 22, L873 (1989) · Zbl 0708.17015 · doi:10.1088/0305-4470/22/18/004
[44] MacFarlane, A.J.: On q-analogues of the quantum harmonic oscillator and the quantum group \[SU(2)_q\] SU(2)q. J. Phys. A. 22, 4581 (1989) · Zbl 0722.17009 · doi:10.1088/0305-4470/22/21/020
[45] Ballesteros, A., Civitarese, O., Reboiro, M.: Correspondence between the q-deformed harmonic oscillator and finite range potentials. Phys. Rev. C 68, 044307 (2003) · Zbl 1178.81122 · doi:10.1103/PhysRevC.68.044307
[46] Biedenharn, L.C., Lohe, M.A.: Quantum Group Symmetry and q-Tensor Algebras. World Scientific, Singapore (1995) · Zbl 0842.17011 · doi:10.1142/2815
[47] Meljanac, S., Milekovic, M., Pallua, S.: Unified view of deformed single-mode oscillator algebras. Phys. Lett. B 328, 55 (1994) · Zbl 1022.81603 · doi:10.1016/0370-2693(94)90427-8
[48] Ballesteros, A., Civitarese, O., Reboiro, M.: Nonstandard q-deformed realizations of the harmonic oscillator. Phys. Rev. C 72, 014305 (2005) · doi:10.1103/PhysRevC.72.014305
[49] Floratos, E.G.: The many-body problem for q-oscillators. J. Phys. A 24, 4739 (1991) · Zbl 0775.81002 · doi:10.1088/0305-4470/24/20/009
[50] Avancini, S.S., Krein, G.: Many-body problems with composite particles and q-Heisenberg algebras. J. Phys. A 28, 685 (1995) · Zbl 0852.17029 · doi:10.1088/0305-4470/28/3/021
[51] Lorek, A., Ruffing, A., Wess, J.: A q-deformation of the harmonic oscillator. Z. Phys. C 74, 369 (1997) · doi:10.1007/s002880050399
[52] FichtmÂÍuller, M., Lorek, A., Wess, J.: q-deformed phase space and its lattice structure. Z. Phys. C 71, 533 (1996) · doi:10.1007/s002880050201
[53] Schwenk, J., Wess, J.: A q-deformed quantum mechanical toy model. Phys. Lett. B 291, 273 (1992) · doi:10.1016/0370-2693(92)91044-A
[54] Zhang, J.-Z.: A q-deformed uncertainty relation. Phys. Lett. A 262, 125 (1999) · Zbl 1044.81645 · doi:10.1016/S0375-9601(99)00564-2
[55] Zhang, J.-Z.: A q-deformed quantum mechanics. Phys. Lett. B 440, 66 (1998) · doi:10.1016/S0370-2693(98)01079-X
[56] Zhang, J.-Z., Osland, P.: Perturbative aspects of q-deformed dynamics. Eur. Phys. J. C 20, 393 (2001) · Zbl 1011.81025 · doi:10.1007/s100520100649
[57] Ballesteros, A., Civitarese, O., Herranz, F.J., Reboiro, M.: Fermion-boson interactions and quantum algebras. Phys. Rev. C 66, 064317 (2002) · Zbl 1178.81122 · doi:10.1103/PhysRevC.66.064317
[58] Sviratcheva, K.D., Bahri, C., Georgieva, A.I., Draayer, J.P.: Physical significance of q deformation and many-body interactions in nuclei. Phys. Rev. Lett. 93, 152501 (2004) · doi:10.1103/PhysRevLett.93.152501
[59] Ya, S., Mikhalychev, A.B.: Single-atom laser generates nonlinear coherent states. Phys. Rev. A 85, 063817 (2012) · doi:10.1103/PhysRevA.85.063817
[60] Fragner, A., Goeppl, M., Fink, J.M., Baur, M., Bianchetti, R., Leek, P.J., Blais, A., Wallraff, A.: Resolving vacuum fluctuations in an electrical circuit by measuring the lamb shift. Science 322, 1357 (2008) · doi:10.1126/science.1164482
[61] Astafiev, O., Inomata, K., Niskanen, A.O., Yamamoto, T., Pashkin, Y.A., Nakamura, Y., Tsai, J.S.: Single artificial-atom lasing. Nature 449, 588 (2007) · doi:10.1038/nature06141
[62] Ashhab, S., Johansson, J.R., Zagoskin, A.M., Nori, F.: Two-level systems driven by large-amplitude fields. Phys. Rev. A 75, 063414 (2007) · doi:10.1103/PhysRevA.75.063414
[63] Shevchenko, S.N., Ashhab, S., Nori, F.: Landau-zener-stückelberg interferometry. Phys. Rep. 492, 1 (2010) · doi:10.1016/j.physrep.2010.03.002
[64] Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002) · doi:10.1103/PhysRevA.65.032314
[65] Kares, K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics, vol. 1983. Springer, Berlin (1983). (1983 edition) · Zbl 0545.46049
[66] Fang, M.F., Zhou, P., Swain, S.: Entropy squeezing for a two-level atom. J. Mod. Opt. 47, 1043 (2000) · Zbl 1002.81062 · doi:10.1080/09500340008233404
[67] Abdel-Khalek, S., Berrada, K., Ooi, C.H.R.: Beam splitter entangler for nonlinear bosonic fields. Laser Phys. 22, 1449 (2012) · doi:10.1134/S1054660X12090010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.