×

Interaction of the generalized Duffin-Kemmer-Petiau equation with a non-minimal coupling under the cosmic rainbow gravity. (English) Zbl 07838305

Summary: In this study, we survey the generalized Duffin-Kemmer-Petiau oscillator containing a non-minimal coupling interaction in the context of rainbow gravity in the presence of the cosmic topological defects in space-time. In this regard, we intend to investigate relativistic quantum dynamics of a spin-0 particle under the modification of the dispersion relation according to the Katanaev-Volovich geometric approach. Thus, based on the geometric model, we study the aforementioned bosonic system under the modified background by a few rainbow functions. In this way, by using an analytical method, we acquire energy eigenvalues and corresponding wave functions to each scenario. Regardless of rainbow gravity function selection, the energy eigenvalue can present symmetric, anti-symmetric, and symmetry breaking characteristics. Besides, one can see that the deficit angular parameter plays an important role in the solutions.

MSC:

83-XX Relativity and gravitational theory
53-XX Differential geometry

References:

[1] Amelino-Camelia, G., Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale, Int. J. Mod. Phys. D11 (2002) 35-59. · Zbl 1062.83500
[2] Magueijo, J. and Smolin, L., Lorentz invariance with an invariant energy scale, Phys. Rev. Lett.88 (2002) 190403.
[3] Galan, P. and Marugan, G. A. Mena, Quantum time uncertainty in a gravity’s rainbow formalism, Phys. Rev. D70 (2004) 124003.
[4] Amelino-Camelia, G., Doubly-special relativity: First results and key open problems, Int. J. Mod. Phys. D11 (2002) 1643-1669. · Zbl 1070.83500
[5] Magueijo, J. and Smolin, L., Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D67 (2003) 044017.
[6] Bezerra, V. B., Mota, H. F. and Muniz, C. R., Casimir effect in the rainbow Einstein’s universe, EPL120 (2017) 10005.
[7] Smolin, L., Falsifiable predictions from semiclassical quantum gravity, Nucl. Phys. B742 (2006) 142-157. · Zbl 1214.83011
[8] Garattini, R. and Mandanici, G., Modified dispersion relations lead to a finite zero point gravitational energy, Phys. Rev. D83 (2011) 084021.
[9] Ling, Y., Li, X. and Zhang, H. B., Thermodynamics of modified black holes from gravity’s rainbow, Mod. Phys. Lett. A22 (2007) 2749-2756. · Zbl 1143.83310
[10] Amelino-Camelia, G., Ellis, J. R., Mavromatos, N. E., Nanopoulos, D. V. and Sarkar, S., Tests of quantum gravity from observations of gamma-ray bursts, Nature393 (1998) 763-765.
[11] Magueijo, J. and Smolin, L., Gravity’s rainbow, Class. Quantum Grav.21 (2004) 1725-1736. · Zbl 1051.83004
[12] Hendi, S. H. and Faizal, M., Black holes in Gauss-Bonnet gravity’s rainbow, Phys. Rev. D92 (2015) 044027.
[13] Hendi, S. H., Panah, B. Eslam and Panahiyan, S., Topological charged black holes in massive gravity’s rainbow and their thermodynamical analysis through various approaches, Phys. Lett. B769 (2017) 191-201. · Zbl 1370.83078
[14] Hendi, S. H., Asymptotically charged BTZ black holes in gravity’s rainbow, Gen. Relativ. Gravit.48 (2016) 50. · Zbl 1338.83132
[15] Hendi, S. H., Panahiyan, S., Panah, B. Eslam and Momennia, M., Thermodynamic instability of nonlinearly charged black holes in gravity’s rainbow, Eur. Phys. J. C76 (2016) 150. · Zbl 1366.83077
[16] Hendi, S. H., Faizal, M., Panah, B. Eslam and Panahiyan, S., Charged dilatonic black holes in gravity’s rainbow, Eur. Phys. J. C76 (2016) 296. · Zbl 07408457
[17] Hendi, S. H., Bordbar, G. H., Panah, B. Eslam and Panahiyan, S., Modified TOV in gravity’s rainbow: Properties of neutron stars and dynamical stability conditions, J. Cosmol. Astropart. Phys.09 (2016) 013.
[18] Leiva, C., Saavedra, J. and Villanueva, J., Geodesic structure of the Schwarzschild black hole in rainbow gravity, Mod. Phys. Lett. A24 (2009) 1443-1451. · Zbl 1168.83322
[19] Li, H., Ling, Y. and Han, X., Modified (A)dS Schwarzschild black holes in rainbow spacetime, Class. Quantum Grav.26 (2009) 065004. · Zbl 1162.83011
[20] Bezerra, V. B., Christiansen, H. R., Cunha, M. S. and Muniz, C. R., Exact solutions and phenomenological constraints from massive scalars in a gravity’s rainbow spacetime, Phys. Rev. D96 (2017) 024018.
[21] Khodadi, M., Nozari, K. and Sepangi, H. R., More on the initial singularity problem in gravity’s rainbow cosmology, Gen. Relativ. Gravit.48 (2016) 166. · Zbl 1370.83065
[22] Awad, A., Ali, A. F. and Majumder, B., Nonsingular rainbow universes, J. Cosmol. Astropart. Phys.10 (2013) 052.
[23] Majumder, B., Quantum rainbow cosmological model with perfect fluid, Int. J. Mod. Phys. D22 (2013) 1350079. · Zbl 1278.83042
[24] Hendi, S. H., Momennia, M., Panah, B. Eslam and Panahiyan, S., Nonsingular universe in massive gravity’s rainbow, Phys. Dark Univ.16 (2017) 26-33. · Zbl 1379.83020
[25] Bakke, K. and Mota, H., Dirac oscillator in the cosmic string spacetime in the context of gravity’s rainbow, Eur. Phys. J. Plus133 (2018) 409.
[26] Kangal, E. E., Salti, M., Aydogdu, O. and Sogut, K., Relativistic quantum dynamics of scalar particles in the rainbow formalism of gravity, Phys. Scr.96 (2021) 095301. · Zbl 1473.83103
[27] Sogut, K., Salti, M. and Aydogdu, O., Quantum dynamics of photon in rainbow gravity, Ann. Phys.431 (2021) 168556. · Zbl 1473.83103
[28] Kemmer, N., Quantum theory of Einstein-Bose particles and nuclear interaction, Proc. R. Soc. Lond. A166 (1938) 127-153. · Zbl 0018.33607
[29] Duffin, R. J., On the characteristic matrices of covariant systems, Phys. Rev.54 (1938) 1114. · Zbl 0020.09006
[30] Kemmer, N., The particle aspect of meson theory, Proc. R. Soc. Lond. A173 (1939) 91-116. · JFM 65.1533.03
[31] G. Petiau, University of Paris thesis, Académie Royale de Médecine de Belgique, Classe des Sciences, Mémoires (1936). · JFM 62.1635.04
[32] Moshinsky, M. and Szczepaniak, A., The Dirac oscillator, J. Phys. A: Math. Gen.22 (1989) L817.
[33] Zare, S., Hassanabadi, H. and de Montigny, M., Duffin-Kemmer-Petiau oscillator in the presence of a cosmic screw dislocation, Int. J. Mod. Phys. A35 (2020) 2050195.
[34] Falek, M. and Merad, M., Bosonic oscillator in the presence of minimal length, J. Math. Phys.50 (2009) 023508. · Zbl 1202.81124
[35] Hassanabadi, H., Molaee, Z. and Zarrinkamar, S., DKP oscillator in the presence of magnetic field in \((1+2)\)-dimensions for spin-zero and spin-one particles in noncommutative phase space, Eur. Phys. J. C72 (2012) 2217. · Zbl 1263.81161
[36] Falek, M. and Merad, M., DKP oscillator in a noncommutative space, Commun. Theor. Phys.50 (2008) 587-592. · Zbl 1392.81160
[37] Guo, G., Long, C., Yang, Z. and Qin, S., DKP oscillator in noncommutative phase space, Can. J. Phys.87 (2009) 989-993.
[38] Yang, Z. H., Long, C. Y., Qin, S. J. and Long, Z. W., DKP oscillator with spin-0 in three-dimensional noncommutative phase space, Int. J. Theor. Phys.49 (2010) 644-651. · Zbl 1187.81170
[39] Falek, M. and Merad, M., A generalized bosonic oscillator in the presence of a minimal length, J. Math. Phys.51 (2010) 033516. · Zbl 1309.81072
[40] Debergh, N., Ndimubandi, J. and Strivay, D., On relativistic scalar and vector mesons with harmonic oscillator like interactions, Z. Phys. C - Part. Fields56 (1992) 421-425.
[41] Nedjadi, Y. and Barrett, R. C., The Duffin-Kemmer-Petiau oscillator, J. Phys. A: Math. Gen.27 (1994) 4301-4315. · Zbl 0829.35135
[42] Nedjadi, Y., Ait-Tahar, S. and Barrett, R. C., An extended relativistic quantum oscillator for \(S=1\) particles, J. Phys. A: Math. Gen.31 (1998) 3867-3874. · Zbl 0905.70018
[43] de Melo, G. R., de Montigny, M. and Santos, E. S., Spinless Duffin-Kemmer-Petiau oscillator in a Galilean non-commutative phase space, J. Phys. Conf. Ser.343 (2012) 012028. · Zbl 1252.81058
[44] Boumali, A., On the eigensolutions of the one-dimensional Duffin-Kemmer-Ptiau oscillator, J. Math. Phys.49 (2008) 022302. · Zbl 1153.81326
[45] Hassanabadi, H., Hosseinpour, M. and de Montigny, M., Duffin-Kemmer-Petiau equation in curved space-time with scalar linear interaction, Eur. Phys. J. Plus132 (2017) 541. · Zbl 1359.81119
[46] Aounallah, H., Lütfüoğlu, B. C. and Kříž, J., Thermal properties of a two-dimensional Duffin-Kemmer-Petiau oscillator under an external magnetic field in the presence of a minimal length, Mod. Phys. Lett. A35 (2020) 2050278. · Zbl 1448.81378
[47] Hassanabadi, H. and Hosseinpour, M., Thermodynamic properties of neutral particle in the presence of topological defects in magnetic cosmic string background, Eur. Phys. J. C76 (2016) 553.
[48] Bakke, K. and Furtado, C., On the interaction of the Dirac oscillator with the Aharonov-Casher system in topological defect backgrounds, Ann. Phys.336 (2013) 489-504. · Zbl 1286.81090
[49] Bakke, K., Belich, H. and Silva, E. O., Relativistic Landau-Aharonov-Casher quantization based on the Lorentz symmetry violation background, J. Math. Phys.52 (2011) 063505. · Zbl 1317.81169
[50] Bakke, K., Furtado, C. and Nascimento, J. R., Gravitational geometric phase in the presence of torsion, Eur. Phys. J. C60 (2009) 501-507. · Zbl 1189.83029
[51] Bakke, K. and Furtado, C., Bound states for neutral particles in a rotating frame in the cosmic string spacetime, Phys. Rev. D82 (2010) 084025.
[52] Hosseinpour, M., Hassanabadi, H. and Andrade, F. M., The DKP oscillator with a linear interaction in the cosmic string space-time, Eur. Phys. J. C78 (2018) 93. · Zbl 1406.81040
[53] de Montigny, M., Hosseinpour, M. and Hassanabadi, H., The spin-zero Duffin-Kemmer-Petiau equation in a cosmic-string space-time with the Cornell interaction, Int. J. Mod. Phys A.31 (2016) 1650191. · Zbl 1359.81119
[54] Hamil, B., Lütfüoğlu, B. C. and Aounallah, H., The spin-one DKP equation with a nonminimal vector interaction in the presence of minimal uncertainty in momentum, Mod. Phys. Lett. A36 (2021) 2150021. · Zbl 1456.81169
[55] Deng, L. F., Long, C. Y., Long, Z. W. and Xu, T., Generalized Dirac oscillator in cosmic string space-time, Adv. High Energy Phys.2018 (2018) 2741694. · Zbl 1406.81039
[56] Ashour, A., Faizal, M., Ali, A. Farag and Hammad, F., Branes in gravity’s rainbow, Eur. Phys. J. C76 (2016) 264.
[57] Zare, S., Hassanabadi, H. and de Montigny, M., Non-inertial effects on a generalized DKP oscillator in a cosmic string space-time, Gen. Relativ. Gravit.52 (2020) 25. · Zbl 1439.83027
[58] Garcia, G. Q., Oliveira, J. R. de S., Bakke, K. and Furtado, F., Fermions in Godel-type background space-times with torsion and the Landau quantization, Eur. Phys. J. Plus132 (2017) 123.
[59] Carvalho, J., Furtado, C. and Moraes, F., Dirac oscillator interacting with a topological defect, Phys. Rev. A84 (2011) 032109.
[60] Medeiros, E. R. Figueiredo and de Mello, E. R. Bezerra, Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential, Eur. Phys. J. C72 (2012) 2051.
[61] Castro, L. B., Quantum dynamics of scalar bosons in a cosmic string background, Eur.Phys. J. C75 (2015) 287.
[62] Castro, L. B., Noninertial effects on the quantum dynamics of scalar bosons, Eur. Phys. J. C76 (2016) 61.
[63] Andrade, F. M. and Silva, E. O., Effects of spin on the dynamics of the 2D Dirac oscillator in the magnetic cosmic string background, Eur. Phys. J. C74 (2014) 3187.
[64] Arfken, G. B. and Weber, H. J., Mathematical Methods for Physicists, 6th edn. (Elsevier Academic Press, New York, 2005). · Zbl 1066.00001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.