×

Falsifiable predictions from semiclassical quantum gravity. (English) Zbl 1214.83011

Summary: Quantum gravity is studied in a semiclassical approximation and it is found that to first order in \(\sqrt {\hbar G} = l_{\mathrm{Pl}}\) the effect of quantum gravity is to make the low energy effective spacetime metric energy dependent. The diffeomorphism invariance of the semiclassical theory forbids the appearance of a preferred frame of reference, consequently the local symmetry of this energy-dependent effective metric is a non-linear realization of the Lorentz transformations, which renders the Planck energy observer independent. This gives a form of deformed or doubly special relativity (DSR), previously explored with Magueijo, called the rainbow metric. The general argument determines the sign, but not the exact coefficient of the effect. But it applies in all dimensions with and without supersymmetry, and is, at least to leading order, universal for all matter couplings. A consequence of DSR realized with an energy dependent effective metric is a helicity independent energy dependence in the speed of light to first order in \(l_{\mathrm{Pl}}\). However, thresholds for TeV photons and GZK protons are unchanged from special relativistic predictions. These predictions of quantum gravity are falsifiable by the upcoming AUGER and GLAST experiments.

MSC:

83C45 Quantization of the gravitational field
81V17 Gravitational interaction in quantum theory

References:

[1] Sarkar, S., Possible astrophysical probes of quantum gravity, Mod. Phys. Lett. A, 17, 1025-1036 (2002)
[2] Konopka, T. J.; Major, S. A., Observational limits on quantum geometry effects, New J. Phys., 4, 57 (2002)
[3] Amelino-Camelia, G.; Kowalski-Glikman, J.; Mandanici, G.; Procaccini, A., Phenomenology of doubly special relativity
[4] Amelino-Camelia, G.; Piran, T., Planck-scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV−\(γ\) paradoxes, Phys. Rev. D, 64, 036005 (2001)
[5] Takeda, M.; Sakaki, N.; Honda, K., Energy determination in the Akeno giant air shower array experiment
[6] Magueijo, J.; Smolin, L., Gravity’s rainbow, Class. Quantum Grav., 21, 1725-1736 (2004) · Zbl 1051.83004
[7] Kimberly, D.; Magueijo, J.; Medeiros, J., Non-linear relativity in position space, Phys. Rev. D, 70, 084007 (2004)
[8] Kowalski-Glikman, J., Observer-independent quanta of mass and length · Zbl 1062.83540
[9] Magueijo, J.; Smolin, L., Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D, 67, 044017 (2003)
[10] Gambini, R.; Pullin, J., Nonstandard optics from quantum spacetime, Phys. Rev. D, 59, 124021 (1999)
[11] Alfaro, J.; Morales-Tcotl, H. A.; Urrutia, L. F., Loop quantum gravity and light propagation, Phys. Rev. D, 65, 103509 (2002)
[12] Smolin, L., A holographic formulation of quantum general relativity, Phys. Rev. D, 61, 084007 (2000)
[13] Smolin, L., Quantum gravity with a positive cosmological constant · Zbl 1183.83044
[14] Smolin, L., An invitation to loop quantum gravity · Zbl 1183.83044
[15] Ezawa, K., Ashtekar’s formulation for \(N = 1, N = 2\) supergravities as constrained BF theories, Prog. Theor. Phys., 95, 863-882 (1996)
[16] Smolin, L., Chern-Simons theory in 11 dimensions as a non-perturbative phase of M-theory · Zbl 0989.83056
[17] Freidel, L.; Krasnov, K.; Puzio, R., BF description of higher-dimensional gravity theories, Adv. Theor. Math. Phys., 3, 1289-1324 (1999) · Zbl 0997.83020
[18] Banks, T., TCP, quantum gravity, the cosmological constant and all that, Nucl. Phys. B, 249, 332 (1985)
[19] Smolin, L.; Soo, C., The Chern-Simons invariant as the natural time variable for classical and quantum cosmology, Nucl. Phys. B, 449, 289 (1995) · Zbl 1076.83512
[20] Soo, C.; Chang, L. N., Int. J. Mod. Phys. D, 3, 529 (1994) · Zbl 0811.53080
[21] Soo, C., Wave function of the universe and Chern-Simons perturbation theory · Zbl 1011.83043
[22] Amelino-Camelia, G.; Smolin, L.; Starodubtsev, A., Quantum symmetry, the cosmological constant and Planck scale phenomenology, Class. Quantum Grav., 21, 3095 (2004) · Zbl 1061.83025
[23] Smolin, L., Linking topological quantum field theory and nonperturbative quantum gravity, J. Math. Phys., 36, 6417 (1995) · Zbl 0856.58055
[24] Starodubtsev, A., Topological excitations around the vacuum of quantum gravity I: The symmetries of the vacuum
[25] Freidel, L.; Kowalski-Glikman, J.; Smolin, L., \(2 + 1\) gravity and doubly special relativity, Phys. Rev. D, 69, 044001 (2004)
[26] Ashtekar, A., New variables for classical and quantum gravity, Phys. Rev. Lett., 57, 18, 2244-2247 (1986)
[27] Rovelli, C., Quantum Gravity (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0962.83507
[28] Gibbons, G. W.; Hawking, S. W., Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D, 15, 2738 (1977)
[29] Kodama, H., Phys. Rev. D, 42, 2548 (1990)
[30] Witten, E., A note on the Chern-Simons and Kodama wavefunctions
[31] Friedel, L.; Smolin, L., The linearization of the Kodama state · Zbl 1119.83320
[32] Alexander, S.; Malecki, J.; Smolin, L., Quantum gravity and inflation, Phys. Rev. D, 70, 044025 (2004)
[33] Alexander, S.; Schleich, K.; Witt, D. M., Fermionic sectors for the Kodama state
[34] Myers, R. C.; Pospelov, M., Ultraviolet modifications of dispersion relations in effective field theory, Phys. Rev. Lett., 90, 211601 (2003) · Zbl 1267.81298
[35] Collins, J.; Perez, A.; Sudarsky, D.; Urrutia, L.; Vucetich, H., Lorentz invariance and quantum gravity: An additional fine-tuning problem?, Phys. Rev. Lett., 93, 191301 (2004)
[36] Gleiser, R. J.; Kozameh, C. N., Astrophysical limits on quantum gravity motivated birefringence
[37] Heyman, D.; Hinteleitner, F.; Major, S., On reaction thresholds in doubly special relativity, Phys. Rev. D, 69, 105016 (2004) · Zbl 1405.83003
[38] Girelli, F.; Livine, E. R.
[39] Ambjorn, J.; Jurkiewicz, J.; Loll, R., Emergence of a 4D world from causal quantum gravity, Phys. Rev. Lett., 93, 131301 (2004)
[40] Magueijo, J.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.