×

When every projective module is a direct sum of finitely generated modules. (English) Zbl 1126.13008

The authors investigate the question of when every projective right module is a direct sum of finitely generated modules. The main result is a precise criterion for every projective right module having the aforementioned property. Using this criterion they give a new proof of a Bergman’s result that ensures that every projective module over a weakly semihereditary ring is a direct sum of finitely generated modules.

MSC:

13C10 Projective and free modules and ideals in commutative rings
Full Text: DOI

References:

[1] Akasaki, T., Idempotent ideals of integral group rings, J. Algebra, 23, 343-346 (1972) · Zbl 0243.16007
[2] Akasaki, T., A note on nonfinitely generated projective \(Z \pi \)-modules, Proc. Amer. Math. Soc., 86, 391 (1982) · Zbl 0501.20002
[3] Albrecht, F., On projective modules over semihereditary rings, Proc. Amer. Math. Soc., 12, 638-639 (1961) · Zbl 0118.04401
[4] Azarpanah, A., When is \(C(X)\) a clean ring?, Acta Math. Hungar., 94, 1-2, 53-58 (2002) · Zbl 0996.54023
[5] Bass, H., Big projective modules are free, Illinois J. Math., 7, 24-31 (1963) · Zbl 0115.26003
[6] Bass, H., Projective modules over free groups are free, J. Algebra, 1, 367-373 (1964) · Zbl 0145.26604
[7] Bergman, G. M., Hereditary commutative rings and centres of hereditary rings, Proc. London Math. Soc., 23, 214-236 (1971) · Zbl 0219.13018
[8] Bergman, G. M., Hereditarily and cohereditarily projective modules, (Ring Theory, Proc. Conf.. Ring Theory, Proc. Conf., Parc City (1972), Academic Press), 29-62 · Zbl 0206.32501
[9] Brookshear, J. G., On projective prime ideals in \(C(X)\), Proc. Amer. Math. Soc., 69, 1, 203-204 (1978) · Zbl 0387.54004
[10] Butler, M. C.R.; Campell, J. M.; Kovács, L. G., On infinite rank representations of groups and orders of finite lattice type, Arch. Math., 83, 297-308 (2004) · Zbl 1065.16013
[11] Cohn, P. M., Free Rings and Their Relations, London Math. Soc. Monogr. Ser., vol. 19 (1985), Academic Press · Zbl 0659.16001
[12] Dean, C.; Stafford, J. T., A nonembeddable noetherian ring, J. Algebra, 115, 175-181 (1988) · Zbl 0641.16009
[13] De Marco, G., Projectivity of pure ideals, Rend. Sem. Math. Univ. Padova, 68, 289-304 (1983) · Zbl 0543.13004
[14] Eklof, P., Modules with strange decomposition properties, (Krause, H.; Ringel, C. M., Infinite Length Modules. Infinite Length Modules, Trends Math. (2000), Birkhäuser), 75-87 · Zbl 0990.16007
[15] Facchini, A., Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Progr. Math., vol. 167 (1998), Birkhäuser · Zbl 0930.16001
[16] Fine, N. J.; Gillman, L., Extension of continuous functions in βN, Bull. Amer. Math. Soc., 66, 376-381 (1960) · Zbl 0161.42203
[17] Finn, R.; Martinez, J., Global dimension of rings of functions, Comm. Algebra, 28, 2, 1075-1089 (2000) · Zbl 0971.46018
[18] Fuchs, L.; Salce, L., Modules over Non-Noetherian Domains, Math. Surveys Monogr., vol. 84 (2002), American Mathematical Society · Zbl 0668.13016
[19] Gillman, L.; Henriksen, M., Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc., 82, 366-391 (1956) · Zbl 0073.09201
[20] Gillman, L.; Jerison, M., Rings of Continuous Functions, Grad. Texts in Math., vol. 43 (1976), Springer · Zbl 0151.30003
[21] Hart, K. P., The Čech-Stone compactification of the real line, (Recent Progress in General Topology. Recent Progress in General Topology, Prague, 1991 (1992), North-Holland), 317-352 · Zbl 0847.54028
[22] Hinohara, Y., Projective modules over weakly noetherian rings, J. Math. Soc. Japan, 15, 1, 75-88 (1963) · Zbl 0113.26105
[23] Y. Hinohara, Supplement to [22]; Y. Hinohara, Supplement to [22]
[24] Jensen, C. U., A remark on arithmetical rings, Proc. Amer. Math. Soc., 15, 951-959 (1964) · Zbl 0135.07902
[25] Jøndrup, S., Rings in which pure ideals are generated by idempotents, Math. Scand., 30, 177-185 (1972) · Zbl 0242.13011
[26] Jøndrup, S.; Trosborg, P. J., A remark on pure ideals and projective modules, Math. Scand., 35, 16-20 (1974) · Zbl 0292.16017
[27] Kaplansky, I., Projective modules, Ann. Math., 68, 372-377 (1958) · Zbl 0083.25802
[28] Lam, T. Y., A First Course in Noncommutative Rings, Grad. Texts in Math., vol. 131 (1991), Springer · Zbl 0728.16001
[29] Lam, T. Y., Lectures on Modules and Rings, Grad. Texts in Math., vol. 199 (1999), Springer · Zbl 0911.16001
[30] Levy, L. S.; Robson, J. C., Hereditary noetherian prime rings. III. Infinitely generated modules, J. Algebra, 225, 275-298 (2000) · Zbl 0955.16025
[31] Linnell, P. A., Nonfree projective modules for integral group rings, Bull. London Math. Soc., 14, 124-126 (1982) · Zbl 0456.20001
[32] Linnell, P.; Puninski, G.; Smith, P., Idempotent ideals and non-finitely generated projective modules over integral group rings of polycyclic-by-finite groups, J. Algebra, 305, 845-858 (2006) · Zbl 1111.16026
[33] McConnel, J. C.; Robson, J. C., Noncommutative Noetherian Rings, Grad. Stud. Math., vol. 30 (2000), American Mathematical Society
[34] McGovern, W., Clean semiprime \(f\)-rings with bounded inversion, Comm. Algebra, 31, 7, 3295-3304 (2003) · Zbl 1021.06011
[35] Müller, B. J., On semi-perfect rings, Illinois J. Math., 14, 464-467 (1970) · Zbl 0197.30903
[36] O’Neill, J. D., Examples of non-finitely generated projective modules, (Lect. Notes Pure Appl. Math., vol. 140 (1993), Springer), 271-278 · Zbl 0806.16002
[37] Nicholson, W. K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229, 269-278 (1977) · Zbl 0352.16006
[38] Prest, M., Model Theory and Modules, London Math. Soc. Lecture Note Ser., vol. 130 (1987), Cambridge University Press
[39] Puninski, G., Serial Rings (2001), Kluwer · Zbl 1032.16001
[40] Puninski, G., Projective modules over the endomorphism ring of a biuniform module, J. Pure Appl. Algebra, 188, 227-246 (2004) · Zbl 1055.16001
[41] Puninski, G.; Rothmaler, Ph., When every finitely generated flat module is projective, J. Algebra, 277, 542-558 (2004) · Zbl 1077.16003
[42] Puninski, G.; Rothmaler, Ph., Pure-projective modules, J. London Math. Soc. (2), 71, 304-320 (2005) · Zbl 1089.16008
[43] Rump, W., Large lattices over orders, Proc. London Math. Soc. (3), 91, 105-128 (2005) · Zbl 1087.16011
[44] P.F. Smith, A note on projective modules, Proc. Roy. Soc. Edinburgh Sect. A 75 (1975/1976) 23-31; P.F. Smith, A note on projective modules, Proc. Roy. Soc. Edinburgh Sect. A 75 (1975/1976) 23-31 · Zbl 0332.16010
[45] Schofield, A. H., Representation of Rings over Skew Fields, London Math. Soc. Lecture Note Ser., vol. 92 (1985), Cambridge University Press · Zbl 0571.16001
[46] Swan, R. G., Induced representations and projective modules, Ann. of Math., 71, 552-578 (1960) · Zbl 0104.25102
[47] Tuganbaev, A. A., Rings with flat right ideals and distributive rings, Math. Notes, 38, 2, 218-228 (1985) · Zbl 0601.16004
[48] Vasconcelos, W. V., On projective modules of finite rank, Proc. Amer. Math. Soc., 22, 430-433 (1969) · Zbl 0176.31601
[49] Vasconcelos, W. V., Finiteness in projective ideals, J. Algebra, 25, 269-278 (1973) · Zbl 0254.13012
[50] Warfield, R. B., Exchange rings and decompositions of modules, Math. Ann., 199, 31-36 (1972) · Zbl 0228.16012
[51] Whitehead, J. M., Projective modules and their trace ideals, Comm. Algebra, 8, 19, 1873-1901 (1980) · Zbl 0447.16018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.