×

An efficient algorithm for a class of stochastic forward and inverse Maxwell models in \(\mathbb{R}^3\). (English) Zbl 1453.65017

Summary: We describe an efficient algorithm for reconstruction of the electromagnetic parameters of an unbounded dielectric medium from noisy cross section data induced by a point source in \(\mathbb{R}^3\). The efficiency of our Bayesian inverse algorithm for the parameters is based on developing an offline high order forward stochastic model and also an associated deterministic dielectric media Maxwell solver. Underlying the inverse/offline approach is our high order fully discrete Galerkin algorithm for solving an equivalent surface integral equation reformulation that is stable for all frequencies. The efficient algorithm includes approximating the likelihood distribution in the Bayesian model by a decomposed fast generalized polynomial chaos (gPC) model as a surrogate for the forward model. Offline construction of the gPC model facilitates fast online evaluation of the posterior distribution of the dielectric medium parameters. Parallel computational experiments demonstrate the efficiency of our deterministic, forward stochastic, and inverse dielectric computer models.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
78A25 Electromagnetic theory (general)
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory

Software:

BEM++; TMATROM
Full Text: DOI

References:

[1] Stuart, A., Inverse problems: a Bayesian perspective, Acta Numer., 19, 451-559 (2010) · Zbl 1242.65142
[2] Yang, K.; Guha, N.; Efendiev, Y.; Mallick, B., Bayesian and variational Bayesian approaches for flows in heterogeneous random media, J. Comput. Phys., 345, 275-293 (2017) · Zbl 1378.76116
[3] Jiang, L.; Ou, N., Multiscale model reduction for Bayesian inverse problems of subsurface flow, J. Comput. Appl. Math., 319, 188-209 (2017) · Zbl 1524.65478
[4] Knapik, B. T.; van der Vaart, A. W.; van Zanten, J. H., Bayesian recovery of the initial condition for the heat equation, Commun. Stat., 42, 1294-1313 (2013) · Zbl 1347.62057
[5] Hyvönen, N.; Leinonen, M., Stochastic Galerkin finite element method with local conductivity basis for electrical impedance tomography, SIAM/ASA J. Uncertain. Quantificat., 3, 998-1019 (2015) · Zbl 1327.65224
[6] Kaipio, J. P.; Kolehmainen, V.; Somersalo, E.; Vauhkonen, M., Statistical inversion and Monte Carlo sampling methods in electrical impedence tomography, Inverse Probl., 16, 1487-1522 (2000) · Zbl 1044.78513
[7] Wang, Y.; Ma, F.; Zheng, E., Bayesian method for shape reconstruction in the inverse interior scattering problem, Math. Probl. Eng., 2015, 1-12 (2015) · Zbl 1394.78013
[8] Bui-Thanh, T.; Ghattas, O., An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation, Int. J. Uncertain. Quantificat., 2, 203-222 (2014) · Zbl 1306.65270
[9] Palafox, A.; Capistrán, M. A.; Christen, J. A., Effective parameter dimension via Bayesian model selection in the inverse acoustic scattering problem, Math. Probl. Eng., 2014, 1-12 (2014) · Zbl 1407.62448
[10] Palafox, A.; Capistrán, M. A.; Christen, J. A., Point cloud-based scatterer approximation and affine invariant sampling in the inverse scattering problem, Math. Methods Appl. Sci., 40, 3393-3403 (2017) · Zbl 1368.65173
[11] Daza, M. L.; Capistrán, M. A.; Christen, J. A.; Guadarrama, L., Solution of the inverse scattering problem from inhomogeneous media using affine invariant sampling, Math. Methods Appl. Sci., 40, 3311-3319 (2017) · Zbl 1368.65169
[12] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1998), Springer · Zbl 0893.35138
[13] Nédélec, J.-C., Acoustic and Electromagnetic Equations (2001), Springer · Zbl 0981.35002
[14] Epstein, C.; Greengard, L., Debye sources and the numerical solution of the time harmonic Maxwell equations, Commun. Pure Appl. Math., 63, 413-463 (2010) · Zbl 1190.35215
[15] Epstein, C.; Greengard, L.; O’Neal, M., Debye sources and the numerical solution of the time harmonic Maxwell equations II, Commun. Pure Appl. Math., 66, 753-789 (2013) · Zbl 1291.35383
[16] Ganesh, M.; Hawkins, S. C.; Volkov, D., An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: reformulation and well-posedness analysis, J. Math. Anal. Appl., 412, 277-300 (2014) · Zbl 1308.78005
[17] Little, D. J.; Hawkins, S. C.; Kane, D. M., An exact surface-integral approach for accurate interferometric microscopy of single nanoparticles, Opt. Express, 23, 6228-6238 (2015)
[18] Lu, F.; Morzfeld, M.; Chorin, A. J., Limitations of polynomial chaos expansion in the Bayesian solution of inverse problems, J. Comput. Phys., 282, 138-147 (2015) · Zbl 1351.62075
[19] Schillings, C.; Schwab, C., Sparse, adaptive Smolyak quadratures for Bayesian inverse problems, Inverse Probl., 29, 1-28 (2013) · Zbl 1278.65008
[20] Chen, P.; Schwab, C., Sparse-grid, reduced-basis Bayesian inversion, Comput. Methods Appl. Mech. Eng., 297, 84-115 (2015) · Zbl 1425.65020
[21] Chen, P.; Schwab, C., Sparse-grid, reduced-basis Bayesian inversion: nonaffine-parametric nonlinear equations, J. Comput. Phys., 316, 470-503 (2016) · Zbl 1349.62076
[22] Bérenger, J.-P., Perfectly Matched Layer (PML) for Computational Electromagnetics (2007), Morgan & Claypool
[23] Müller, C., Foundations of the Mathematical Theory of Electromagnetic Waves (1969), Springer · Zbl 0181.57203
[24] Buffa, A.; Hiptmair, R., Galerkin boundary element methods for electromagnetic scattering, (Ainsworth, M.; etal., Topics in Computational Wave Propagation Direct and Inverse Problems Series. Topics in Computational Wave Propagation Direct and Inverse Problems Series, Lect. Notes Comput. Sci. Eng., vol. 31 (2003), Springer) · Zbl 1055.78013
[25] Song, J. M.; Lu, C. C.; Chew, W. C.; Lee, S. W., Fast Illinois Solver Code (FISC), IEEE Antennas Propag. Mag., 40, 27-34 (1998)
[26] Śmigaj, W.; Arridge, S.; Betcke, T.; Phillips, J.; Schweiger, M., Solving boundary integral problems with BEM++, ACM Trans. Math. Softw., 41, 6:1-6:40 (2015) · Zbl 1371.65127
[27] Bruno, O. P., Fast, high-order, high-frequency integral methods for computational acoustics and electromagnetics, (M. A.; etal., Topics in Computational Wave Propagation Direct and Inverse Problems Series. Topics in Computational Wave Propagation Direct and Inverse Problems Series, Lecture Notes in Computer Science and Engineering, vol. 31 (2003), Springer) · Zbl 1051.78009
[28] Ganesh, M.; Hawkins, S. C., A spectrally accurate algorithm for electromagnetic scattering in three dimensions, Numer. Algorithms, 43, 25-60 (2006) · Zbl 1129.78011
[29] Ganesh, M.; Hawkins, S. C., A hybrid high-order algorithm for radar cross section computations, SIAM J. Sci. Comput., 29, 1217-1243 (2007) · Zbl 1151.78378
[30] Ganesh, M.; Hawkins, S. C., A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces, J. Comput. Phys., 227, 4543-4562 (2008) · Zbl 1143.78004
[31] Ganesh, M.; Hawkins, S. C., A high-order algorithm for multiple electromagnetic scattering in three dimensions, Numer. Algorithms, 50, 469-510 (2009) · Zbl 1175.78011
[32] Louër, F. L., Spectrally accurate numerical solution of hypersingular boundary integral equations for three-dimensional electromagnetic wave scattering problems, J. Comput. Phys., 275, 662-666 (2014) · Zbl 1349.65648
[33] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations (2016), BCAM SpringerBriefs · Zbl 1329.65203
[34] Ganesh, M.; Hesthaven, J.; Stamm, B., A reduced basis method for multiple electromagnetic scattering in three dimensions, J. Comput. Phys., 231, 7756-7779 (2012) · Zbl 1254.78012
[35] Mishchenko, M. I.; Travis, L. D.; Lacis, A. A., Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (2006), Cambridge University Press
[36] Ganesh, M.; Hawkins, S. C., Three dimensional electromagnetic scattering T-matrix computations, J. Comput. Appl. Math., 227, 1702-1709 (2010) · Zbl 1195.78016
[37] Ganesh, M.; Hawkins, S. C.; Hiptmair, R., Convergence analysis with parameter estimates for a reduced basis acoustic scattering T-matrix method, IMA J. Numer. Anal., 32, 1348-1374 (2012) · Zbl 1275.65074
[38] Ganesh, M.; Hawkins, S. C., Algorithm 975: TMATROM—a T-matrix reduced order model software, ACM Trans. Math. Softw., 44, 9:1-9:18 (2017) · Zbl 1484.78006
[39] Jiang, J.; Chen, Y.; Narayan, A., A goal-oriented reduced basis methods-accelerated generalized polynomial chaos algorithm, SIAM/ASA J. Uncertain. Quantificat., 4, 1, 1398-1420 (2016) · Zbl 1352.65012
[40] Ganesh, M.; Hawkins, S. C., A stochastic pseudospectral and T-matrix algorithm for acoustic scattering by a class of multiple particle configurations, J. Quant. Spectrosc. Radiat. Transf., 123, 41-52 (2013)
[41] Ganesh, M.; Graham, I. G., A high-order algorithm for obstacle scattering in three dimensions, J. Comput. Phys., 198, 211-242 (2004) · Zbl 1052.65108
[42] Louër, F. L., A high order spectral algorithm for elastic obstacle scattering in three dimensions, J. Comput. Phys., 279, 1-17 (2014) · Zbl 1351.74113
[43] Louër, F. L., A spectrally accurate method for the direct and inverse scattering problems by multiple 3D dielectric obstacles, ANZIAM J, 59, E1-E49 (2017)
[44] Costabel, M.; Louër, F. L., On the Kleinman-Martin integral equation method for electromagnetic scattering by a dielectric body, SIAM J. Appl. Math., 71, 635-656 (2011) · Zbl 1231.35248
[45] Woo, A. C.; Wang, H. T.; Schuh, M. J.; Sanders, M. L., Benchmark radar targets for the validation of computational electromagnetics programs, IEEE Antennas Propag. Mag., 35, 84-89 (1993)
[46] Ganesh, M.; Thompson, T., Spectral properties of Schrödinger operators on superconducting surfaces, J. Spectr. Theory, 4, 569-612 (2014) · Zbl 1311.58004
[47] Ganesh, M.; Thompson, T., Schrödinger eigenbasis on a class of superconducting surfaces: ansatz, analysis, FEM approximations and computations, Appl. Numer. Math., 89, 45-75 (2015) · Zbl 1308.82091
[48] Ganesh, M.; Thompson, T., A spectrally accurate algorithm and analysis for a Ginzburg-Landau model on superconducting surfaces, Multiscale Model. Simul., 16, 78-105 (2018) · Zbl 1422.65451
[49] Ganesh, M.; Hawkins, S. C., A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions, J. Comput. Phys., 230, 104-125 (2011) · Zbl 1432.76158
[50] Ganesh, M.; Hawkins, S. C., A high performance computing and sensitivity analysis algorithm for stochastic many-particle wave scattering, SIAM J. Sci. Comput., 37, A1475-A1503 (2015) · Zbl 1342.65008
[51] Hellmers, J.; Eremina, E.; Wriedt, T., Simulation of light scattering by biconcave Cassini ovals using the nullfield method with discrete sources, J. Opt. A, Pure Appl. Opt., 8, 1-9 (2006)
[52] Wriedt, T.; Hellmers, J.; Eremina, E.; Schuh, R., Light scattering by single erythrocyte: comparison of different methods, J. Quant. Spectrosc. Radiat. Transf., 100, 444-456 (2006)
[53] Nousiainen, T.; McFarquhar, G. M., Light scattering by quasi-spherical ice crystals, J. Atmos. Sci., 61, 2229-2248 (2004)
[54] Veihelmann, B.; Nousiainen, T.; Kahnert, M.; van der Zande, W. J., Light scattering by small feldspar particles simulated using the Gaussian random sphere geometry, J. Quant. Spectrosc. Radiat. Transf., 100, 393-405 (2005)
[55] Wienert, L., Die numerische approximation von randintegraloperatoren für die Helmholtzgleichung im \(R^3 (1990)\), University of Göttingen, Ph.D. thesis · Zbl 0741.65085
[56] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (2013), Springer · Zbl 1266.35121
[57] van de Hulst, H. C., Light Scattering by Small Particles (1981), Dover Publications Inc.
[58] Wiscombe, W. J., Improved Mie scattering algorithms, Appl. Opt., 19, 1505-1509 (1990)
[59] Ganesh, M.; Hawkins, S. C., Scattering by stochastic boundaries: hybrid low- and high-order quantification algorithms, ANZIAM J., 56, C312-C338 (2016)
[60] Lamberg, L.; Muinonen, K.; Ylönen, J.; Lumme, K., Spectral estimation of Gaussian random circles and spheres, J. Comput. Appl. Math., 136, 109-121 (2001) · Zbl 0984.62075
[61] Maitre, O. P.L.; Kino, O. M., Spectral Methods for Uncertainty Quantification (2010), Springer · Zbl 1193.76003
[62] Ganesh, M.; Hawkins, S. C., An offline/online algorithm for a class of stochastic multiple obstacle configurations in half-plane, J. Comput. Appl. Math., 307, 52-64 (2016) · Zbl 1382.35345
[63] Lasanen, S., Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns, Inverse Probl. Imaging, 6, 267-287 (2012) · Zbl 1263.62042
[64] Gelman, A., Prior distributions for variance parameters in hierarchical models, Bayesian Anal., 1, 515-533 (2006) · Zbl 1331.62139
[65] Hill, B. M., Inference about variance components in the one-way model, J. Am. Stat. Assoc., 60, 806-825 (1965) · Zbl 0127.36004
[66] Tiao, G. C.; Tan, W. Y., Bayesian analysis of random-effect models in the analysis of variance. I: Posterior distribution of variance components, Biometrika, 52, 37-53 (1965) · Zbl 0144.42204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.