×

Debye sources and the numerical solution of the time harmonic Maxwell equations. (English) Zbl 1190.35215

The paper puts forward a new representation for solutions to the problem of scattering of a monochromatic electromagnetic wave on a body made of an ideal conductor. The representation amounts to solving an effective Fredholm integral equation for fictitious densities of electric and magnetic charges on the surface of the body, which generalizes the classical Lorenz-Debye-Mie solutions for scattering on a conducting sphere, that represents the electric and magnetic fields in terms of two Debye’s scalar potentials. The approach elaborated in this paper avoids well-known problems encountered in the scattering theory, such as spurious resonances and the low-frequency breakdown. The method makes it possible to develop a new proof of the existence of the solution to the scattering problem with vanishing normal components at the conducing boundary, in the case when the boundary is not simply connected.

MSC:

35Q61 Maxwell equations
45B05 Fredholm integral equations
78A45 Diffraction, scattering

References:

[1] Adams, Combined field integral equation formulation for electromagnetic scattering from convex geometries, IEEE Trans Antennas Propag 52 (5) pp 1294– (2004) · Zbl 1368.78031
[2] Alouges, A stable well-conditioned integral equation for electromagnetic scattering, J Comput Appl Math 204 (2) pp 440– (2007) · Zbl 1127.78005
[3] Axelsson, Transmission problems for Maxwell’s equations with weakly Lipschitz interfaces, Math Methods Appl Sci 29 (6) pp 665– (2006) · Zbl 1095.78001
[4] Blank, Notes on magneto-hydrodynamics V: Theory of Maxwell’s equations without displacement current
[5] Available at: http://www.cims.nyu.edu/â{\(\tfrac14\)}schmitt/.
[6] Bouwkamp, On multipole expansions in the theory of electromagnetic radiation, Physica 20 (1) pp 539– (1954) · Zbl 0056.43301
[7] Bruno, Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations, J Comput Phys 228 (17) pp 6169– (2009) · Zbl 1184.78017
[8] Christiansen, A preconditioner for the electric field integral equation based on Calderon formulas, SIAM J Numer Anal 40 (3) pp 1100– (2002) · Zbl 1021.78010
[9] Colton, Integral equation methods in scattering theory (1992) · Zbl 0522.35001
[10] Colton, Inverse acoustic and electromagnetic scattering theory 93 (1992) · Zbl 0760.35053 · doi:10.1007/978-3-662-02835-3
[11] Contopanagos, Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering, IEEE Trans Antennas Propag 50 (12) pp 1824– (2002)
[12] Cools, Nullspaces of MFIE and Calderon preconditioned EFIE operators applied to toroidal structures, IEEE Trans Antennas Propag 57 pp 3205– (2009) · Zbl 1369.78717
[13] Debye, Der Lichtdruck auf Kugeln von beliebigen Material, Ann Phys (Leipzig) 30 pp 57– (1909) · JFM 40.0900.03 · doi:10.1002/andp.19093351103
[14] Griffiths, Principles of algebraic geometry (1978) · Zbl 0408.14001
[15] GÃ{\(\tfrac14\)}lzow, An integral equation method for the time-harmonic Maxwell equations with boundary conditions for the normal components, J Integral Equations Appl 1 (3) pp 365– (1988)
[16] Jackson, Classical electrodynamics (1999)
[17] Jiang, Second kind integral equations for the classical potential theory on open surfaces. II, J Comput Phys 195 (1) pp 1– (2004) · Zbl 1050.65118
[18] Kress, On an exterior boundary value problem for the time-harmonic Maxwell equations with boundary conditions for the normal components of the electric and magnetic field, Math Methods Appl Sci 8 (1) pp 77– (1986) · Zbl 0629.35103
[19] Lorenz, Lysvevxgelsen i og uden for en af plane lysbolger belyst kugle, K Dan Vidensk Selsk Forh 6 pp 1– (1890)
[20] Maue, Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integral-gleichung, Z Physik 126 pp 601– (1949) · Zbl 0033.14101
[21] Mautz, A combined-source solution for radiation and scattering from a perfectly conducting body, IEEE Trans Antennas Propag 27 (4) pp 445– (1979)
[22] Mie, BeitrÃ{\currency}ge zur Optik trÃ{\(\tfrac14\)}ber Medien, speziell kolloidaler Metallçsungen, Ann Phys (Leipzig) 25 (3) pp 377– (1908) · JFM 39.0890.02 · doi:10.1002/andp.19083300302
[23] Morita, Integral equation methods for electromagnetics (1990)
[24] Nédélec, Acoustic and electromagnetic equations. Integral representations for harmonic problems 144 (2001) · doi:10.1007/978-1-4757-4393-7
[25] Papas, Theory of electromagnetic wave propagation (1988)
[26] Picard, Zur Lçsungstheorie der zeitunabhÃ{\currency}ngigen Maxwellschen Gleichungen mit der Randbedingung n Â{\(\cdot\)} B = n Â{\(\cdot\)} D = 0 in anisotropen, inhomogenen Medien, Manuscripta Math 13 (1) pp 37– (1974)
[27] Picard, Ein Randwertproblem fÃ{\(\tfrac14\)}r die zeitunabhÃ{\currency}ngigen Maxwellschen Gleichungen mit der Randbedingung n Â{\(\cdot\)} Î{\(\mu\)}E = n Â{\(\cdot\)} Î{\(\tfrac14\)}H = 0 in beschrÃ{\currency}nkten Gebieten beliebigen Zusammenhangs, Applicable Anal 6 (3) pp 207– (1976)
[28] Poggio, Computer Techniques for Electromagnetics pp 159– (1973) · doi:10.1016/B978-0-08-016888-3.50008-8
[29] Scharstein, R. W. Helmholtz decomposition of surface electric current in electromagnetic scattering problems. Proc. 23rd Southeastern Symposium on System Theory, March, 1991, 424â426.
[30] Taskinen, Current and charge integral equation formulation, IEEE Trans Antennas Propag 54 (1) pp 58– (2006) · Zbl 1369.78309
[31] Vick, Homology theory. An introduction to algebraic topology 53 (1973)
[32] Warner, Foundations of differentiable manifolds and Lie groups (1971) · Zbl 0241.58001
[33] Werner, On an integral equation in electromagnetic diffraction theory, J Math Anal Appl 14 (3) pp 445– (1966) · Zbl 0151.43102
[34] Wilton, D. R.; Glisson, A. W. On improving the electric field integral equation at low frequencies. URSI Radio Science Meeting Digest (Los Angeles, CA), 24, 1981.
[35] Wu, A study of two numerical solution procedures for the electric field integral equation at low frequency, Appl Comput Electromagnet Soc J 10 (3) pp 69– (1995)
[36] Yaghjian, Augmented electric- and magnetic-field integral equations, Radio Sci 16 (12) pp 987– (1981)
[37] Yee, Uniqueness theorems for an exterior electromagnetic field, SIAM J Appl Math 18 (1) pp 77– (1970) · Zbl 0206.10901
[38] Zhang, Magnetic field integral equation at very low frequencies, IEEE Trans Antennas Propag 51 (8) pp 1864– (2003)
[39] Zhao, Integral equation solution of Maxwell’s equations from zero frequency to microwave frequencies, IEEE Trans Antennas Propag 48 (10) pp 1635– (2000) · Zbl 1368.78013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.