×

A study of periodic orbits near Europa. (English) Zbl 1507.70038

Summary: Periodic orbits and their invariant manifolds are known to be useful for transportation in space, but a large portion of the related research goes toward a small number of periodic orbit families that are relatively simple to compute. In this study, motivated by a search for new and lesser-known families of useful periodic orbits, the bifurcation diagram near Europa is explored and 400 bifurcation points are found. Families are generated for 74 of these and provided in a publicly accessible database. Of these 74 generated families, those that also appear to exist in a model perturbed by certain zonal harmonics of Jupiter and Europa are identified. Differential corrections techniques are discussed, and a new method for natural parameter continuation in the three-body problem is presented. Periodic orbits with particularly useful geometric and stability properties for science purposes are highlighted.

MSC:

70M20 Orbital mechanics
70F07 Three-body problems
70K42 Equilibria and periodic trajectories for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Abouelmagd, EI; Asiri, HM; Sharaf, MA, The effect of oblateness in the perturbed restricted three-body problem, Meccanica, 48, 10, 2479-2490 (2013) · Zbl 1293.70047 · doi:10.1007/s11012-013-9762-3
[2] Abouelmagd, EI; Alhothuali, MS; Guirao, JL; Malaikah, HM, Periodic and secular solutions in the restricted three-body problem under the effect of zonal harmonic parameters, Appl. Math. Inform. Sci., 9, 4, 1659-1669 (2015)
[3] Allgower, EL; Georg, K., Introduction to numerical continuation methods, Soc. Indust. Appl. Math. (2003) · Zbl 1036.65047 · doi:10.1137/1.9780898719154
[4] Anderson, RL, Tour design using resonant-orbit invariant manifolds in patched circular restricted three-body problems, J. Guidance Control Dyn., 44, 1, 106-119 (2021) · doi:10.2514/1.G004999
[5] Anderson, RL; Lo, MW, Role of invariant manifolds in low-thrust trajectory design, J. Guidance Control Dyn., 32, 6, 1921-1930 (2009) · doi:10.2514/1.37516
[6] Beyn, W. J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Y. A., Sandstede, B.: Numerical continuation, and computation of normal forms, In: Handbook of Dynamical Systems (1999). https://www.researchgate.net/publication/2357536_Numerical_Continuation_And_Computation_Of_Normal_Forms · Zbl 1034.37048
[7] Bolliger, M. J.: Cislunar mission design- transfers linking near rectilinear halo orbits and the butterfly family. PhD Thesis, Purdue University (2019)
[8] Bosanac, N.: Leveraging natural dynamical structures to explore multi-body systems. PhD Thesis, Purdue University (2016)
[9] Bradie, B., A Friendly Introduction to Numerical Analysis (2006), New Jersey: Pearson Prentice Hall, New Jersey
[10] Broucke, RA, Periodic orbits in the restricted three-body problem with earth-moon masses, NASA Tech. Rep., 32-1168, 1-92 (1968)
[11] Broucke, R., Stability of periodic orbits in the elliptic, restricted three-body problem, AIAA J., 7, 6, 1003-1009 (1969) · Zbl 0179.53301 · doi:10.2514/3.5267
[12] Bury, L., McMahon, J., Lo, M.: Low-energy boundaries on vertical motion near the secondary body. J. Astronaut. Sci. (2021)
[13] Bury, L., McMahon, J., Lo, M.W.: Periodic orbits as viable landing solutions with an abort option at Europa, In: AAS Astrodynamics Specialists Conference, pp. 1-18. Big Sky, MT (2021)
[14] Bury, L., McMahon, J.: The effect of zonal harmonics on dynamical structures in the circular restricted three-body problem near the secondary body, Celestial Mech. Dyn. Astron., 132(45) (2020) · Zbl 1470.70015
[15] Campbell, E. T.: Bifurcations from families of periodic solutions in the circular restricted problem with application to trajectory design. PhD Thesis, Purdue University (1999)
[16] Doedel, EJ; Romanov, VA; Paffenroth, RC; Keller, HB; Dichmann, DJ; Galan-Vioque, J.; Vanderbauwhede, A., Elemental periodic orbits associated with the Libration points in the circular restricted 3-body problem, Int. J. Bifurcation Chaos, 17, 8, 2625-2677 (2007) · Zbl 1139.70006 · doi:10.1142/S0218127407018671
[17] Elshaboury, SM, The equilibrium solutions of restricted problem of three axisymmetric rigid bodies, Earth Moon Planets, 45, 205-211 (1989) · doi:10.1007/BF00057743
[18] Gómez, G.; Koon, WS; Lo, MW; Marsden, JE; Masdemont, J.; Ross, SD, Connecting orbits and invariant manifolds in the spatial restricted three-body problem, Nonlinearity, 17, 1571-1606 (2004) · Zbl 1115.70007 · doi:10.1088/0951-7715/17/5/002
[19] Grebow, D. J.: Trajectory design in the earth-moon system and lunar south pole coverage. PhD Thesis, Purdue University (2010)
[20] Haapala, A. F.: Trajectory design in the spatial circular restricted three-body problem exploiting higher-dimensional poincare maps. PhD Thesis, Purdue University, (2014)
[21] Hénon, M., Generating Families in the Restricted Three-Body Problem (1997), Berlin: Springer, Berlin · Zbl 0882.70001
[22] Hénon, M., New families of periodic orbits in hill’s problem of three bodies, Celestial Mech. Dyn. Astron., 85, 3, 223-246 (2003) · Zbl 1062.70018 · doi:10.1023/A:1022518422926
[23] Howell, KC, Three-dimensional, periodic, “halo ” orbits, Celestial Mech., 32, 1, 53-71 (1984) · Zbl 0544.70013 · doi:10.1007/BF01358403
[24] Jacobson, R.: Jupiter satellite ephemeris file Jup310. NASA navigation and ancillary information facility (2009). https://naif.jpl.nasa.gov/pub/naif/generickernels/spk/satellites/jup310.cmt
[25] Koon, WS; Lo, MW; Marsden, JE; Ross, SD, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos, 10, 2, 427-469 (2000) · Zbl 0987.70010 · doi:10.1063/1.166509
[26] Koon, WS; Lo, MW; Marsden, JE; Ross, SD, Constructing a low energy transfer between Jovian moons, Contemp. Math., 292, 129-146 (2001) · doi:10.1090/conm/292/04919
[27] Koon, WS; Lo, MW; Marsden, JE; Ross, SD, Dynamical Systems, The Three-Body Problem, and Space Mission Design (2006), New Zealand: Marsden Books, New Zealand · Zbl 0985.70007
[28] Lara, M., Simplified equations for computing science orbits around planetary satellites, J. Guidance Control Dyn., 31, 1, 172-181 (2008) · doi:10.2514/1.31107
[29] Lara, M.; Russell, R., Computation of a science orbit about Europa, J. Guidance Control Dyn., 30, 1, 259-263 (2007) · doi:10.2514/1.22493
[30] Lara, M.; San Juan, JF, Dynamic behavior of an orbiter around Europa, J. Guidance Control Dyn., 28, 2, 291-297 (2005) · doi:10.2514/1.5686
[31] Lara, M.; Russell, R.; Villac, B., Classification of the distant stability regions at Europa, J. Guidance Control Dyn., 30, 2, 409-418 (2007) · doi:10.2514/1.22372
[32] Lara, M.; Pérez, IL; López, R., Higher order approximation to the hill problem dynamics about the Libration points, Commun. Nonlinear Sci. Numer. Simul., 59, 612-628 (2018) · Zbl 1510.70029 · doi:10.1016/j.cnsns.2017.12.007
[33] Lo, M.W., Ross, S.D.: The lunar l1 gateway: portal to the stars and beyond, In: AIAA Space 2001 Conference. Albeuquerque, New Mexico (2001)
[34] Lo, M.: Low-energy interplanetary transfers using lagrangian points: transport throughout the solar system using the invariant manifolds of unstable orbits generated by the lagrange points. Filed New Technology Report NPO-20377., Technical Report (1999)
[35] Lo, M. W.: The interplanetary superhighway and the origins program, In: IEEE Aerospace Conference (2002)
[36] Markellos, V.V., Douskos, C.N., Dimitriadis, K.P., Perdios, E.A.: Lyapunov orbits and asymptotic connections in the hill problem with oblateness, Recent Adv. Mech. Related Fields Honour of Prof. Constantine L, Goudas (2004)
[37] Mittal, A.; Ahmad, I.; Bhatnagar, KB, Periodic orbits generated by Lagrangian solutions of the restricted three body problem when one of the primaries is an oblate body, Astrophys. Space Sci., 319, 1, 63-73 (2009) · Zbl 1172.85001 · doi:10.1007/s10509-008-9942-0
[38] Papadakis, KE; Zagouras, CG, Bifurcation points and intersections of families of periodic orbits in the three-dimensional restricted three-body problem, Astrophys. Space Sci., 199, 241-256 (1993) · Zbl 0767.70008 · doi:10.1007/BF00613198
[39] Poincaré, H., Les Méthodes Nouvelles de la Mécanique Céleste (1892), Paris: Gauthier-Villars et Fils, Paris · JFM 24.1130.01
[40] Pucacco, G., Structure of the centre manifold of the L1, L2 collinear Libration points in the restricted three-body problem, Celestial Mech. Dyn. Astron., 131, 10, 1-18 (2019) · Zbl 1451.70021 · doi:10.1007/s10569-019-9922-4
[41] Restrepo, R. L.: Patched periodic orbits: a systematic strategy for low-energy trajectory and moon tour design. PhD Thesis (2018)
[42] Restrepo, RL; Russell, RP, A database of planar axisymmetric periodic orbits for the solar system, Celestial Mech. Dyn. Astron., 130, 7, 1-24 (2018) · Zbl 1447.70029 · doi:10.1007/s10569-018-9844-6
[43] Robin, IA; Markellos, VV, Numerical determination of three-dimensional periodic orbits generated from vertical self-resonant satellite orbits, Celestial Mech., 21, 395-434 (1980) · Zbl 0426.70012 · doi:10.1007/BF01231276
[44] Russell, RP, Global search for planar and three dimensional periodic orbits near Europa, J. Astronaut. Sci., 54, 2, 199-226 (2006) · doi:10.1007/BF03256483
[45] Russell, RP; Lam, T., Designing ephemeris capture trajectories at Europa using unstable periodic orbits, J. Guidance Control Dyn., 30, 2, 11-13 (2007)
[46] Schwaniger, A. J.: NASA technical note: trajectories in the earth-moon space with symmetrical free return properties, Lunar Flight Study Series, 5(D-1833) (1963)
[47] Seydel, R.: Practical Bifurcation and Stability Analysis, vol. 8. Springer, New York, Dordrech Heidelberg London, 3rd ed. (2009) · Zbl 1195.34004
[48] Sharma, R. K.: Periodic orbits of collision in the restricted problem of three bodies in a three-dimensional coordinate system, when the bigger primary is an oblate spheroid, Indian Nat. Sci. Acade., 5(2), (1972)
[49] Sharma, R. K.: Periodic orbits of collision in the restricted problem of three bodies, when the bigger primary is an oblate spheroid, Indian Nat. Sci. Acad., 4(4), (1972)
[50] Sharma, R. K.: Periodic orbits of collision in the restricted problem of three bodies, when the bigger primary is slowly rotating oblate spheroid, Indian Nat. Sci. Acad., 5(2) (1972)
[51] Singh, J.; Umar, A., Effect of oblateness of an artificial satellite on the orbits around the triangular points of the earth-moon system in the axisymmetric ER3BP, Differ. Equ. Dyn. Syst., 25, 1, 11-27 (2017) · Zbl 1393.70040 · doi:10.1007/s12591-014-0232-8
[52] Szebehely, V., Theory of Orbits - The Restricted Problem of Three Bodies (1967), New York: Academic Press, New York · Zbl 1372.70004
[53] The Math Works Inc., MATLAB R2021a, (2021)
[54] Zamaro, M.; Biggs, JD, Natural motion around the martian moon phobos: the dynamical substitutes of the Libration point orbits in an elliptic three-body problem with gravity harmonics, Celestial Mech. Dyn. Astron., 122, 263-302 (2015) · Zbl 1428.70020 · doi:10.1007/s10569-015-9619-2
[55] Zimovan-Spreen, E. M.: Trajectory design and targeting for applications to the exploration program in cislunar space. PhD Thesis, Purdue University (2021)
[56] Zimovan-Spreen, EM; Howell, KC; Davis, DC, Near rectilinear halo orbits and nearby higher-period dynamical structures: orbital stability and resonance properties, Celestial Mech. Dyn. Astron., 132, 5, 1-25 (2020) · Zbl 1448.70085 · doi:10.1007/s10569-020-09968-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.