×

MFO-RIMS tandem workshop: Arithmetic homotopy and Galois theory. Abstracts from the MFO-RIMS tandem workshop held September 24–29, 2023. (English) Zbl 1537.00019

Summary: This report presents a general panorama of recent progress in the arithmetic-geometry theory of Galois and homotopy groups and its ramifications. While still relying on Grothendieck’s original pillars, the present program has now evolved beyond the classical group-theoretic legacy to result in an autonomous project that exploits a new geometrization of the original insight and sketches new frontiers between homotopy geometry, homology geometry, and diophantine geometry.
This panorama “closes the loop” by including the last twenty-year progress of the Japanese arithmetic-geometry school via Ihara’s program and Nakamura-Tamagawa-Mochizuki’s anabelian approach, which brings its expertise in terms of algorithmic, combinatoric, and absolute reconstructions. These methods supplement and interact with those from the classical arithmetic of covers and Hurwitz spaces and the motivic and geometric Galois representations.
This workshop has brought together the next generation of arithmetic homotopic Galois geometers, who, with the support of senior experts, are developing new techniques and principles for the exploration of the next research frontiers.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
11-06 Proceedings, conferences, collections, etc. pertaining to number theory
12-06 Proceedings, conferences, collections, etc. pertaining to field theory
14-06 Proceedings, conferences, collections, etc. pertaining to algebraic geometry
55-06 Proceedings, conferences, collections, etc. pertaining to algebraic topology
12F12 Inverse Galois theory
14G32 Universal profinite groups (relationship to moduli spaces, projective and moduli towers, Galois theory)
14H30 Coverings of curves, fundamental group
14H45 Special algebraic curves and curves of low genus
14F06 Sheaves in algebraic geometry
55Pxx Homotopy theory
14F22 Brauer groups of schemes
14G05 Rational points
14D15 Formal methods and deformations in algebraic geometry
11F70 Representation-theoretic methods; automorphic representations over local and global fields
Full Text: DOI

References:

[1] Y. André, On a geometric description of Gal(Q p /Qp) and a p-adic avatar of GT , Duke Math. J. 119 (2003), 1-39. · Zbl 1155.11356
[2] V. G. Drinfeld, On quasitriangular quasi-Hopf algebras and a group closely con-nected with Gal(Q/Q), Algebra i Analiz 2 (1990), 149-181. · Zbl 0718.16034
[3] D. Harbater and L. Schneps, Fundamental groups of moduli and the Grothendieck-Teichmüller group, Trans. Amer. Math. Soc. 352 (2000), 3117-3148. · Zbl 0956.14013
[4] Y. Hoshi, A. Minamide, and S. Mochizuki, Group-theoreticity of numerical invari-ants and distinguished subgroups of configuration space groups, Kodai Math. J. 45 (2022), 295-348. · Zbl 1511.14050
[5] Y. Hoshi, S. Mochizuki, and S. Tsujimura, Combinatorial construction of the abso-lute Galois group of the field of rational numbers, RIMS Preprint 1935 (December 2020).
[6] S. Mochizuki, Topics in absolute anabelian geometry III: Global reconstruction al-gorithms, J. Math. Sci. Univ. Tokyo 22 (2015), 939-1156. · Zbl 1358.14024
[7] S. Mochizuki and S. Tsujimura, Resolution of nonsingularities, point-theoreticity, and metric-admissibility for p-adic hyperbolic curves, RIMS Preprint 1974 (June 2023).
[8] S. Tsujimura, Combinatorial Belyi cuspidalization and arithmetic subquotients of the Grothendieck-Teichmüller group, Publ. Res. Inst. Math. Sci. 56 (2020), 779-829. References · Zbl 1460.14068
[9] L. Berger, C. Breuil, Sur quelques représentations potentiellement cristallines de GL 2 (Qp, Astérisque 330, 2010, 155-211. · Zbl 1243.11063
[10] K. Buzzard, F. Diamond, F. Jarvis, On Serre’s conjecture for mod ℓ Galois repre-sentations over totally real fields, Duke Math. J. 155, 2010, 105-161. · Zbl 1227.11070
[11] C. Breuil, A. Mézard, Multiplicités modulaires et représentations de GL 2 (Zp) et de Gal(Q p /Qp) en ℓ = p, with an appendix by Guy Henniart, Duke Math. J. 115 (2002), 205-310. · Zbl 1042.11030
[12] A. Caraiani, M. Emerton, T. Gee, D. Savitt, Local geometry of moduli stacks of two dimensional Galois representations, Proceedings of the International Colloquium on Arithmetic Geometry, TIFR Mumbai, Jan 6-10, (2020).
[13] X. Caruso, A. David, A. Mézard, Variétés de Kisin strafiées et déformations poten-tiellement Barsotti-Tate, J. Inst. Math. Jussieu 17 (2018), 1019-1064. · Zbl 1450.11050
[14] Combinatorics of Serre weights in the potentially Barsotti-Tate setting, Moscou J. Comb. Number Theory 12 (2023), 1-56. · Zbl 1537.11136
[15] P. Colmez, Série principale unitaire de GL 2 (Qp, Astérisque 330, 2010, 213-262. · Zbl 1242.11095
[16] T. Gee, M. Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate rep-resentations, Forum of Mathematics, Pi, 2014. · Zbl 1408.11033
[17] M. Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2) (2008), 513-546. · Zbl 1205.11060
[18] The Fontaine-Mazur conjecture for GL 2 , J. Amer. Math. Soc. 22 (3) (2009), 641-690. · Zbl 1251.11045
[19] B. Le Hung, A. Mézard, S. Morra, Local model theory for non-generic tame poten-tially Barsotti-Tate deformation rings, Preprint 2023.
[20] G. Pappas, M. Rapoport, Φ-modules and coefficient spaces, Mosc. Math. J. 9, 2009, 625-663. References · Zbl 1194.14032
[21] G. W. Anderson, Torsion points on Fermat Jacobians, roots of circular units and relative singular homology, Duke Math. J. 54 (1987), no. 2, 501-561. · Zbl 1370.11069
[22] G. Anderson and Y. Ihara. Pro-l branched coverings of P 1 and higher circular l-units. Ann. of Math. (2), 128(2):271-293, 1988. · Zbl 0692.14018
[23] R. Davis, R. Pries, V. Stojanoska, and K. Wickelgren, The Galois action and co-homology of a relative homology group of Fermat curves, J. Algebra 505 (2018), 33-69. · Zbl 1456.11217
[24] R. Greenberg, On the Jacobian variety of some algebraic curves, Compositio Math. 42 (1980/81), no. 3, 345-359. · Zbl 0475.14026
[25] M. Kurihara, Some remarks on conjectures about cyclotomic fields and K-groups of Z, Compositio Math. 81 (1992), no. 2, 223-236. · Zbl 0747.11055
[26] R. Pries, Galois action on the étale fundamental group of the Fermat curve, in “Ho-motopic and Geometric Galois Theory” (B. Collas, P. Dèbes, H. Nakamura, J. Stix Ed.) Oberwolfach Rep. 18 (2021), no. 1, pp. 663-744. · Zbl 1487.00035
[27] P. Tzermias, Explicit rational functions on Fermat curves and a theorem of Green-berg, Compositio Math. 122 (2000), no. 3, 337-345. References · Zbl 0965.11029
[28] G. Anderson and Y. Ihara. Pro-l branched coverings of P 1 and higher circular l-units. Ann. of Math. (2), 128(2):271-293, 1988. · Zbl 0692.14018
[29] M. Asada. The faithfulness of the monodromy representations associated with certain families of algebraic curves. J. Pure Appl. Algebra, 159(2-3):123-147, 2001. · Zbl 1045.14013
[30] G. V. Belyȋ. Galois extensions of a maximal cyclotomic field. Izv. Akad. Nauk SSSR Ser. Mat., 43(2):267-276, 479, 1979. · Zbl 0409.12012
[31] M. Boggi. Congruence topologies on the mapping class group. J. Algebra, 546:518-552, 2020. · Zbl 1436.32054
[32] S. Diaz, R. Donagi, and D. Harbater. Every curve is a Hurwitz space. Duke Math. J., 59:737-746, 1989. · Zbl 0712.14013
[33] Y. Hoshi and Y. Iijima. A pro-l version of the congruence subgroup problem for mapping class groups of genus one. J. Algebra, 520:1-31, 2019. · Zbl 1454.14081
[34] Y. Hoshi and S. Mochizuki. On the combinatorial anabelian geometry of nodally nondegenerate outer representations. Hiroshima Math. J., 41(3):275-342, 2011. · Zbl 1264.14041
[35] Y. Hoshi and S. Mochizuki. Topics surrounding the combinatorial anabelian geometry of hyperbolic curves I: inertia groups and profinite Dehn twists. In Galois-Teichmüller theory and arithmetic geometry, volume 63 of Adv. Stud. Pure Math., pages 659-811. Math. Soc. Japan, Tokyo, 2012. · Zbl 1321.14018
[36] Y. Iijima. On the centralizer of the image of the universal outer monodromy repre-sentation of the moduli stack of pointed hyperbolic curves. to appear in Manuscripta Math. · Zbl 1542.14031
[37] N. Ivanov. Fifteen problems about the mapping class groups in Problems on mapping class groups and related topics, In Proc. Sympos. Pure Math., vol, 74, pages 71-80. Amer. Math. Soc, 2006. · Zbl 1281.57011
[38] N. Takao. Braid monodromies on proper curves and pro-ℓ Galois representations. J. Inst. Math. Jussieu, 11(1):161-181, 2012. References · Zbl 1279.14037
[39] O. Cau, Delta-composantes des espaces de modules de revêtements, Journal de Théorie des Nombres de Bordeaux 24.3 (2012), 557-582. · Zbl 1268.14029
[40] J. S. Ellenberg, T. Tran, and C. Westerland, Fox-Neuwirth-Fuks cells, quantum shuffle algebras, and Malle’s conjecture for function fields, arXiv:1701.04541v2 [math.NT] (2023).
[41] P. Dèbes and M. Emsalem. Harbater-Mumford Components and Towers of Moduli Spaces, Journal of the Institute of Mathematics of Jussieu 5 (2006), 351-371. · Zbl 1101.12003
[42] A. Grothendieck, Esquisse d’un programme (1984). Published in Geometric Galois Actions Vol. 1, editors: P. Lochak, L. Schneps (1997), pp. 5-48 (English translation: pp. 243-283).
[43] D. Haran and H. Völklein, Galois groups over complete valued fields, Israel Journal of Mathematics 93 (1996), 9-27. · Zbl 0869.12006
[44] B. Seguin. The Geometry of Rings of Components of Hurwitz Spaces, arXiv:2210.12793 [math.NT] (2022)
[45] B. Seguin, Géométrie et arithmétique des composantes des espaces de Hurwitz, PhD thesis, Université de Lille (2023).
[46] B. Seguin, Fields of Definition of Components of Hurwitz Spaces, arXiv:2303.05903 [math.NT] (2023) References
[47] H. Aramata, “ Über die Teilbarkeit der Dedekindschen Zetafunktionen”, Proc. Imp. Acad. Tokyo, 9 (1933), no. 2, 31-34. · JFM 59.0213.01
[48] J. Browkin, “Multiple zeros of Dedekind zeta functions”, Funct. Approx. Comment. Math. 49 (2013), no. 2, 383-390. · Zbl 1283.11119
[49] R. Foote, H. Ginsberg, V. K. Murty, “Heilbronn characters”, Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 3, 465-496. · Zbl 1326.20007
[50] R. Foote, V. K. Murty, “Zeros and poles of Artin L-series”, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 1, 5-11. · Zbl 0711.11043
[51] B. Huppert, “Monomiale Darstellung endlicher Gruppen”, Nagoya Math. J., 6 (1953), 93-94. · Zbl 0053.01201
[52] D. Hu, I. Kaneko, S. Martin, C. Schildkraut, “Order of zeros of Dedekind zeta func-tions”, Proc. Amer. Math. Soc. 150 (2022), no. 12, 5111-5120. · Zbl 1518.11081
[53] N. Ito, “Note on A-groups”, Nagoya Math. J. 4 (1952), 79-81. · Zbl 0046.02302
[54] H. M. Stark, “Some effective cases of the Brauer-Siegel theorem”, Invent. Math. 23 (1974), 135-152. · Zbl 0278.12005
[55] K. Taketa, “ Über die Gruppen, deren Darstellungen sich sämtlich auf monomiale Gestalt transformieren lassen”, Proc. Imp. Acad. Tokyo, 6 (1930), no. 2, 31-33. · JFM 56.0133.03
[56] G. Yamashita, Twisted Heilbronn Virtual Characters, Hokkaido Math. J. (accepted 2024), 2023, 9 pages. References
[57] I. I. Bouw, Ö. Ejder, V. Karemaker, Dynamical Belyi maps and arboreal Galois groups, Manuscripta Math. 165 (2021), 1-34. · Zbl 1470.11178
[58] P. Dèbes, M. D. Fried, Integral specialization of families of rational functions, Pacific J. Math. 190 (1999), 45-85. · Zbl 1016.12002
[59] P. Dittmann, B. Kadets, Odoni’s conjecture on arboreal Galois representations is false, Proc. Amer. Math. Soc. 150 (2022), 3335-3343. · Zbl 1521.12003
[60] R. Jones, The density of prime divisors in the arithmetic dynamics of quadratic poly-nomials, J. Lond. Math. Soc. 78 (2008), 523-544. · Zbl 1193.37144
[61] J. König, On the largeness of arboreal Galois representations, MFO-RIMS Tandem workshop “Arithmetic homotopy Galois theory”, OWR report (2023).
[62] J. König, D. Neftin, Reducible fibers of polynomial maps. To appear in IMRN. Preprint at arXiv:2001.03630 [math.NT], 2020 References
[63] G. Anderson and Y. Ihara, Pro-l branched coverings of P 1 and higher circular l-units, Ann. of Math. (2) 128 (1988), no. 2, 271-293. · Zbl 0692.14018
[64] F. Brown, Mixed Tate motives over Z, Ann. of Math. (2) 175 (2012), no. 2, 949-976. · Zbl 1278.19008
[65] R. Hain and M. Matsumoto, Weighted completion of Galois groups and Galois actions on the fundamental group of P 1 -{0, 1, ∞}, Compositio Math. 139 (2003), no. 2, 119-167. · Zbl 1072.14021
[66] H. Ichimura and K. Sakaguchi, The nonvanishing of a certain Kummer character χm (after C. Soulé), and some related topics, Galois representations and arithmetic alge-braic geometry (Kyoto, 1985/Tokyo, 1986), Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 53-64. · Zbl 0647.12007
[67] S. Ishii, On Kummer characters arising from Galois actions on the pro-p fundamental groups of once-punctured CM elliptic curves, in preparation, ∼30 pages.
[68] S. Ishii, On the kernels of the pro-p outer Galois representations associated to once-punctured CM elliptic curves, in preparation, ∼40 pages.
[69] Uwe Jannsen, On the l-adic cohomology of varieties over number fields and its Galois cohomology, Galois groups over Q (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 315-360. · Zbl 0703.14010
[70] H. Nakamura, On exterior Galois representations associated with open elliptic curves, J. Math. Sci. Univ. Tokyo 2 (1995), no. 1, 197-231. · Zbl 0914.11035
[71] Christopher Rasmussen and Akio Tamagawa, A finiteness conjecture on abelian vari-eties with constrained prime power torsion, Math. Res. Lett. 15 (2008), no. 6, 1223-1231. · Zbl 1182.11027
[72] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math., vol. 103, No. 1, 1991, p 25-68. · Zbl 0737.11030
[73] R. T. Sharifi, Relationships between conjectures on the structure of pro-p Galois groups unramified outside p, Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), Proc. Sympos. Pure Math., vol. 70, Amer. Math. Soc., Provi-dence, RI, 2002, pp. 275-284. References · Zbl 1072.11085
[74] F. M. Bleher, T. Chinburg and J. Gillibert, Massey products and elliptic curves, Proc. Lond. Math. Soc. (3) 127 (2023), no.1, 134-164. · Zbl 1533.14014
[75] I. Efrat and E. Matzri, Triple Massey products and absolute Galois groups, J. Eur. Math. Soc. 19 (2017), no. 12, 3629-3640. · Zbl 1425.12004
[76] T. Ekedahl, Two examples of smooth projective varieties with nonzero Massey prod-ucts, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Math., vol. 1183, Springer-Verlag, Berlin, 1986, pp. 128-132. · Zbl 0592.55018
[77] P. Guillot, J. Mináč and A. Topaz, Four-fold Massey products in Galois cohomology, Compos. Math. 154 (2018), no. 9, 1921-1959, with an appendix by O. Wittenberg. · Zbl 1455.12005
[78] D. Haran, On the cohomological dimension of Artin-Schreier structures, J. Algebra 156 (1993), 219-236. · Zbl 0829.20042
[79] D. Haran and M. Jarden, The absolute Galois group of a pseudo real closed field, Ann. Sc. Norm. Sup. Pisa 12 (1985), 449-489. · Zbl 0595.12013
[80] Y. Harpaz and O. Wittenberg, The Massey vanishing conjecture for number fields, Duke Math. J. 172 (2023), no. 1, 1-41. · Zbl 1521.11070
[81] M. Hopkins and K. Wickelgren, Splitting varieties for triple Massey products, J. Pure Appl. Algebra 219 (2015), 1304-1319. · Zbl 1323.55014
[82] E. Matzri, Triple Massey products and Galois cohomology, preprint, arXiv:1411.4146 [math.RA](2014).
[83] A. Merkurjev and F. Scavia, Degenerate fourfold Massey products over arbitrary fields, preprint, arXiv:2208.13011 [math.NT] (2022).
[84] A. Merkurjev and F. Scavia, The Massey Vanishing Conjecture for fourfold Massey products modulo 2, preprint, arXiv:2301.09290 [math.NT] (2023).
[85] J. Mináč and N. D. Tân, Triple Massey products vanish over all fields, J. Lond. Math. Soc. (2) 94 (2016), no. 3, 909-932. · Zbl 1378.12002
[86] J. Mináč and N. D. Tân, Triple Massey products and Galois theory, J. Eur. Math. Soc. 19 (2017), 255-284. · Zbl 1372.12004
[87] J. Mináč, F. W. Pasini, C. Quadrelli and N. D. Tân, Koszul algebras and quadratic duals in Galois cohomology, Adv. Math. 380 (2021), Paper No. 107569, 49 pp. · Zbl 1483.12003
[88] A. Pál and G. Quick, Real projective groups are formal, preprint, arXiv:2206.14645 [math.NT] (2022).
[89] A. Pál and E. Szabó, The strong Massey vanishing conjecture for fields with virtual cohomological dimension at most 1, arXiv:1811.06192 [math.AG], to appear in Israel J. Math.
[90] L. Positselski and A. Vishik, Koszul duality and Galois cohomology, Mathematical Research Letters 2 (1995), 771-781. · Zbl 0843.19002
[91] L. Positselski, Galois cohomology of a number field is Koszul, J. Number Theory 145 (2014), 126-152. · Zbl 1320.12006
[92] L. Positselski, Koszulity of cohomology = K(π, 1)-ness + quasi-formality, J. Algebra 483 (2017), 188-229. · Zbl 1454.16034
[93] C. Quadrelli, Massey products in Galois cohomology and the Elementary Type Con-jecture, arXiv:2203.16232v6 [math.NT] (2022), to appear in J. Number Theory. References
[94] A. Borel, J-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111-164. · Zbl 0143.05901
[95] B. Conrad, Finiteness theorems for algebraic groups over function fields, Compos. Math. 148 (2012), no 2, 555-639. · Zbl 1261.20049
[96] D. Harari, T. Szamuely, Local-global questions for tori over p-adic function fields, J. Algebraic Geom. 23, no 3 (2016), 571-605. · Zbl 1355.14018
[97] D. Harari, T. Szamuely, On Tate-Shafarevich groups of one-dimensional families of commutative group schemes over number fields, Math. Z. 302 (2022), 935-948. · Zbl 1527.14051
[98] D. Izquierdo, Variétés abéliennes sur les corps de fonctions de courbes sur des corps locaux, Doc. Math.. 22 (2017), 297-361. · Zbl 1360.14113
[99] M. Saidi, A. Tamagawa, On the arithmetic of abelian varieties, J. reine angew. Math. 762 (2020), 1-33. References · Zbl 1465.11152
[100] A. Betts and J. Stix Galois sections and p-adic period mappings, Preprint arXiv:2204.13674 [math.NT] (2022).
[101] A. Cadoret, Degeneration locus of Qp local systems: conjectures, Expositiones Math. vol. 41, Iss. 3 -Special issue in the memory of Bas Edixhoven, p. 675-708, 2023 · Zbl 1540.14054
[102] A. Cadoret and A. Tamagawa , A uniform open image theorem for l-adic repre-sentations II Duke Math. Journal 162, p. 2301-2344, 2013. · Zbl 1279.14056
[103] H. Diao, K.W. Lan, R. Liu and X. Zh,. Logarithmic Riemann-Hilbert correspon-dences for rigid varieties, Journal of the American Math. Soc. 36, p. 483-562, 2023. · Zbl 1504.14042
[104] G. Faltings, G. Wüstholz (eds.), Rational Points, Aspects of Mathematics, E6, Friedr. Vieweg & Sohn, 1984.
[105] N. M. Katz and W. Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23, p. 73-77, 1974. · Zbl 0275.14011
[106] L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147, p.1-241, 2002. · Zbl 1038.11075
[107] B. Lawrence and A. Venkatesh, Diophantine problems and p-adic period mappings, Invent. Math. 221, p. 893-999, 2020. · Zbl 1455.11093
[108] R. Liu and X. Zhu, Rigidity and a Rieman-Hilbert correspondence for p-adic local systems, Invent. Math. 207, p. 291-343, 2017. · Zbl 1375.14090
[109] J. Pila, A. Shankar and J. Tsimerman, Canonical heights on Shimura varieties and the André-Oort conjectures, Preprint arXiv:2109.08788 [math.NT] (2021)
[110] J.-P. Serre, Abelian ℓ-adic representations and Elliptic curves, W.A. Benjamin, 1968. · Zbl 0186.25701
[111] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Annals of Math. 88, p. 492-517, 1968. · Zbl 0172.46101
[112] K. Shimizu, A p-adic monodromy theorem for de Rham local systems, Compositio Math. 158, p. 2157-2205, 2022. References · Zbl 1514.14031
[113] L.A. Betts, T. Kumpitsch and M. Lüdtke. Chabauty-Kim and the Section Conjecture for locally geometric sections. arXiv:2305.09462 [math.NT], 2023.
[114] L.A. Betts and J. Stix. Galois sections and p-adic period mappings. arXiv:2204.13674 [math.NT], 2022.
[115] J.-M. Fontaine. Représentations p-adiques semi-stables. Astérisque, 223:113-184, 1994. With an appendix by P. Colmez. · Zbl 0865.14009
[116] D. Harari and J. Stix. Descent obstruction and fundamental exact sequence, volume 2 of Contributions in Mathematical and Computational Sciences, chapter 7, pages 147-166. Springer-Verlag, 2012. · Zbl 1315.14032
[117] M. Kim. The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci., 45(1):89-133, 2009. · Zbl 1165.14020
[118] B. Lawrence and A. Venkatesh. Diophantine problems and p-adic period mappings. Invent. Math., 221(3):893-999, 2020. · Zbl 1455.11093
[119] P. Scholze. p-adic Hodge theory for rigid-analytic varieties. Forum of Mathematics, Pi, 1:e1, 2013. · Zbl 1297.14023
[120] P. Scholze. p-adic Hodge theory for rigid-analytic varieties -corrigendum. Forum of Mathematics, Pi, 4:e6, 2016. · Zbl 1405.14049
[121] K. Shimizu. A p-adic monodromy theorem for de Rham local systems. Compositio mathematica, 158(2):2157-2205, 2022. · Zbl 1514.14031
[122] A. Skorobogatov Torsors and rational points. Cambridge Tracts in Mathematics 144. Cambridge University Press, 2001.
[123] M. Stoll. Finite descent obstructions and rational points on curves. Algebra & Number Theory, 1(4):349-391, 2007. References · Zbl 1167.11024
[124] Invitation to Inter-universal Teichmüller theory, in “Expanding Horizons of Inter-universal Teichmüller Theory” conference, RIMS Kyoto, online, 2021, notes and videos at https://www.kurims.kyoto-u.ac.jp/  motizuki/ExpHorizIUT21/WS3/ ExpHorizIUT21-InvitationIUT-notes.html
[125] Inter-universal Teichm ller Theory (IUT) Summit 2021, in “Expanding Horizons of Inter-universal Teichmüller Theory” conference, RIMS Kyoto, online, 2021, notes and videos at https://www.kurims.kyoto-u.ac.jp/  motizuki/ExpHorizIUT21/WS4/ ExpHorizIUT21-IUTSummit-notes.html
[126] S. Mochizuki, Inter-universal Teichmüller Theory I: Construction of Hodge Theaters, Publ. Res. Inst. Math. Sci. 57 (2021), 3-207; II: Hodge-Arakelov-theoretic Evalua-tion, Publ. Res. Inst. Math. Sci. 57 (2021), 209-401; III: Canonical Splittings of the Log-theta-lattice, Publ. Res. Inst. Math. Sci. 57 (2021), 403-626; IV: Log-volume Computations and Set-theoretic Foundations, Publ. Res. Inst. Math. Sci. 57 (2021), 627-723. · Zbl 1465.14005
[127] S. Mochizuki, The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmüller Theory, Inter-universal Teichmüller Theory Summit 2016, RIMS Kōkyūroku Bessatsu B84, Res. Inst. Math. Sci. (RIMS), Kyoto (2021), 23-192; available at https://www.kurims.kyoto-u.ac.jp/  motizuki/Alien · Zbl 07362869
[128] S. Mochizuki, On the essential logical structure of inter-universal Teich-müller theory in terms of logical AND “∧”/logical OR “∨” relations: Report on the occasion of the publication of the four main papers on inter-universal Teichmüller theory, RIMS Preprint 1968 (November 2022); updated version available at: https://www.kurims.kyoto-u.ac.jp/  motizuki/Essential
[129] S. Mochizuki, S. Tsujimura, Resolution of Nonsingularities, Point-theoreticity, and Metric-admissibility for p-adic Hyperbolic Curves, RIMS Preprint 1974 (June 2023).
[130] Y. Hoshi, S. Mochizuki, Arithmetic cuspidalization of Galois sections of hyperbolic curves, manuscript in preparation.
[131] Y. Hoshi, S. Mochizuki, S. Tsujimura, G. Yamashita, Anabelian geometry over com-plete discrete valuation rings with perfect residue fields, manuscript in preparation. References
[132] J. C. Andrade and J. P. Keating, Conjectures for the integral moments and ratios of L-functions over function fields, J. Number Theory 142 (2014), 102-148. · Zbl 1318.11083
[133] J. Bergström, A. Diaconu, D. Petersen, and C. Westerland, Hyperelliptic curves, the scanning map, and moments of families of quadratic L-functions, 2023.
[134] M. Bhargava, The density of discriminants of quartic rings and fields, Ann. of Math. (2) 162 (2005), no. 2, 1031-1063. · Zbl 1159.11045
[135] The density of discriminants of quintic rings and fields, Ann. of Math. (2) 172 (2010), no. 3, 1559-1591. · Zbl 1220.11139
[136] BKL + 15] M. Bhargava, D. M. Kane, H. W. Lenstra, Jr., B. Poonen, and E. Rains, Modeling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves, Camb. J. Math. 3 (2015), no. 3, 275-321. · Zbl 1329.14071
[137] CFK + 05] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, Integral moments of L-functions, Proc. London Math. Soc. (3) 91 (2005), no. 1, 33-104. · Zbl 1075.11058
[138] W. Chen, Homology of braid groups, the Burau representation, and points on su-perelliptic curves over finite fields, Israel J. Math. 220 (2017), no. 2, 739-762. · Zbl 1427.20044
[139] R. Das, Cohomology of the universal smooth cubic surface, Q. J. Math. 72 (2021), no. 3, 795-815. · Zbl 1479.55026
[140] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405-420. · Zbl 0212.08101
[141] J. S. Ellenberg and A. Landesman, Homological stability for generalized Hurwitz spaces and Selmer groups in quadratic twist families over function fields, 2023.
[142] J. S. Ellenberg, T. Tran, and C. Westerland, Fox-Neuwirth-Fuks cells, quantum shuffle algebras, and Malle’s conjecture for function fields, 2023.
[143] J. S. Ellenberg, A. Venkatesh, and C. Westerland, Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields, Ann. of Math. (2) 183 (2016), no. 3, 729-786. · Zbl 1342.14055
[144] G. Malle, On the distribution of Galois groups. II, Experiment. Math. 13 (2004), no. 2, 129-135. · Zbl 1099.11065
[145] J. Wang, Malle’s conjecture for Sn × A for n = 3, 4, 5, Compos. Math. 157 (2021), no. 1, 83-121. MR 4219215 · Zbl 1469.11437
[146] D. J. Wright, Distribution of discriminants of abelian extensions, Proc. London Math. Soc. (3) 58 (1989), no. 1, 17-50. References · Zbl 0628.12006
[147] P. Achinger, K(π, 1)-Spaces in Algebraic Geometry, Thesis (Ph.D.) -University of California, Berkeley, 2015.
[148] F. M. Bleher, T. Chinburg and J. Gillibert, Massey products and elliptic curves, Proc. Lond. Math. Soc. (3) 127 (2023), 134-164. · Zbl 1533.14014
[149] I. Efrat and E. Matzri, Triple Massey products and absolute Galois groups, J. Eur. Math. Soc. 19 (2017), no. 12, 3629-3640. · Zbl 1425.12004
[150] W. G. Dwyer, Homology, Massey products and maps between groups, J. Pure Appl. Algebra 6 (1975), no. 2, 177-190. · Zbl 0338.20057
[151] T. Ekedahl, Two examples of smooth projective varieties with non-zero Massey prod-ucts, in: Algebra, algebraic topology and their interactions (Stockholm, 1983), 128-132, Lecture Notes in Math., 1183, Springer, Berlin, 1986. · Zbl 0592.55018
[152] Y. Harpaz and O. Wittenberg, The Massey vanishing conjecture for number fields, Duke Math. J. 172 (2023), no. 1, 1-41. · Zbl 1521.11070
[153] M. Hopkins and K. Wickelgren, Splitting varieties for triple Massey products, J. Pure Appl. Algebra 219 (2015), 1304-1319. · Zbl 1323.55014
[154] J.-I. Igusa, Fibre Systems of Jacobian Varieties: (III. Fibre Systems of Elliptic Curves), Amer. J. Math. 81 (1959), 453-476. · Zbl 0115.38904
[155] E. Matzri, Triple Massey products in Galois cohomology, arXiv:1411.4146 [math.RA], preprint 2014.
[156] J. Mináč and N. D. Tân, Triple Massey products vanish over all fields, J. Lond. Math. Soc. (2) 94 (2016), no. 3, 909-932. References · Zbl 1378.12002
[157] B. Collas and S. Maugeais, “Composantes irréductibles de lieux spéciaux d”espaces de modules de courbes, action galoisienne en genre quelconque,” Ann. Inst. Fourier, vol. 65, no. 1, pp. 245-276, 2015. · Zbl 1326.11069
[158] B. Collas and S. Philip, On Oda’s problem and special loci, arXiv:2311.15515 [math.AG], 36 pages (2023).
[159] Y. Hoshi and S. Mochizuki, “On the combinatorial anabelian geometry of nodally non-degenerate outer representations,” Hiroshima Math. J. 41 (2011), pp. 275-342. · Zbl 1264.14041
[160] Y. Ihara and H. Nakamura, “On deformation of maximally degenerate stable marked curves and Oda”s problem,” J. Reine Angew. Math., vol. 487, pp. 125-151, 1997. · Zbl 0910.14010
[161] M. Matsumoto, “Galois representations on pronite braid groups on curves,” J. reine angew. Math. 474 (1996), pp. 169-219. · Zbl 0858.12002
[162] T. Oda, “Etale homotopy type of the moduli spaces of algebraic curves,” Geometric Galois actions, London Math. Soc. Lecture Note Ser., 242, Cambridge University Press, Cambridge, pp. 85-95, 1997. · Zbl 0902.14019
[163] N. Takao, “Some remarks on field towers arising from pro-nilpotent universal monodromy representations,” RIMS Kôkyûroku Bessatsu, vol. B51, pp. 55-70, 2014. References · Zbl 1327.14144
[164] S. Mochizuki, The local pro-p anabelian geometry of curves, Invent. Math. 138 (1999), 319-423”. · Zbl 0935.14019
[165] A. Tamagawa, Fundamental groups and geometry of curves in positive characteristic. Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), 297-333, Proc. Sympos. Pure Math., 70, Amer. Math. Soc., Providence, RI, 2002. · Zbl 1054.14039
[166] A. Tamagawa, On the tame fundamental groups of curves over algebraically closed fields of characteristic > 0. Galois groups and fundamental groups, 47-105, Math. Sci. Res. Inst. Publ., 41, Cambridge Univ. Press, Cambridge, 2003. · Zbl 1073.14035
[167] A. Tamagawa, Finiteness of isomorphism classes of curves in positive characteristic with prescribed fundamental groups, J. Algebr. Geom. 13, No. 4 (2004), 675-724. · Zbl 1100.14021
[168] Y. Yang, On the admissible fundamental groups of curves over algebraically closed fields of characteristic p > 0, Publ. Res. Inst. Math. Sci. 54 (2018), 649-678. · Zbl 1439.14102
[169] Y. Yang, On the existence of specialization isomorphisms of admissible fundamental groups in positive characteristic, Math. Res. Lett. 28 (2021), 1941-1959. · Zbl 1505.14049
[170] Z. Hu, Y. Yang, R. Zong, Topology of moduli spaces of curves and anabelian geometry in positive characteristic, Forum of Mathematics, Sigma 12 (2024), Paper No. e33, 36 pp. · Zbl 07819867
[171] Y. Yang, Moduli spaces of fundamental groups of curves in positive characteris-tic I, arXiv:2010.01806 [math.AG] (2020), or see http://www.kurims.kyoto-u.ac.jp/  yuyang/ for the latest version.
[172] Y. Yang, Moduli spaces of fundamental groups of curves in positive characteristic II, in preparation.
[173] Y. Yang, Topological and group-theoretical specializations of fundamental groups of curves in positive characteristic. See http://www.kurims.kyoto-u.ac.jp/  yuyang/
[174] Y. Hoshi, Y. Yang, On the arithmetic fundamental groups of curves over local fields. See http://www.kurims.kyoto-u.ac.jp/  yuyang/
[175] Y. Yang, Moduli spaces of fundamental groups of curves in positive characteristic III: the group-theoretical specialization conjecture, in preparation. References
[176] E. Arad and S. Carmeli and T. Schlank, Étale Homotopy Obstructions of Arithmetic Spheres, arXiv:1902.03404 [math.AG] (2019).
[177] M. Carlson and T. Schlank, The unramified inverse Galois problem and cohomology rings of totally imaginary number fields, arXiv:1612.01766 [math.NT] (2017).
[178] D. Corwin and T. Schlank, Brauer and etale homotopy obstructions to rational points on open covers, arXiv:2006.11699 [math.NT] (2020).
[179] Y. Harpaz and T. Schlank, Homotopy obstructions to rational points, In Torsors, étale homotopy and applications to rational points, of London Math. Soc. Lecture Note Ser. Volume 405 (2013), pages 280-413. · Zbl 1298.14025
[180] Y. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, In Actes du Congrès International des Mathématiciens (Nice, 1970) Tome 1 (1971), pages 401-411. · Zbl 0239.14010
[181] G. Quick, Profinite homotopy theory, Doc. Math. 13 (2008), 585-612. · Zbl 1173.55008
[182] 1 Modulo issues at real places, which go away when considering local-to-global problems. References
[183] N. Boston, R. Jones, Arboreal Galois representations. Geom. Dedicata 124 (2007), 27-35. · Zbl 1206.11069
[184] I. I. Bouw, Ö. Ejder, V. Karemaker, Dynamical Belyi maps and arboreal Galois groups. Manuscripta Math. 165 (2021), 1-34. · Zbl 1470.11178
[185] A. Bridy, J.R. Doyle, D. Ghioca, L.-C. Hsia, T.J Tucker, A question for iterated Galois groups in arithmetic dynamics. Can. Math. Bull. 64(2) (2021), 401-417 · Zbl 1475.37111
[186] A. Ferraguti, The set of stable primes for polynomial sequences with large Galois group. Proc. Amer. Math. Soc. 146(7) (2018), 2773-2784. · Zbl 1442.11150
[187] R. Jones, The density of prime divisors in the arithmetic dynamics of quadratic polynomials, J. Lond. Math. Soc. 78 (2008), 523-544. · Zbl 1193.37144
[188] R. Jones, Galois representations from pre-image trees: an arboreal survey. Pub. Math. Besancon (2013), 107-136. · Zbl 1307.11069
[189] R. Jones, Iterated Galois towers, their associated martingales, and the p-adic Man-delbrot set, Compositio Math. 143 (5) (2007), 1108-1126. · Zbl 1166.11040
[190] J. König, D. Neftin, Reducible fibers of polynomial maps. To appear in IMRN. Preprint at arXiv:2001.03630 [math.NT]
[191] J. König, D. Neftin, S. Rosenberg, Polynomial compositions with large monodromy groups and applications to arithmetic dynamics. Work in progress.
[192] J. König, Sparsity of stable primes for dynamical sequences. Work in progress.
[193] L. Mérai, A. Ostafe, I.E. Shparlinski, Dynamical irreducibility of polynomials mod-ulo primes. Math. Z. 298 (2021), 1187-1199. · Zbl 1489.11177
[194] R.W.K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. (3) 51 (1985), no. 3, 385-414. References · Zbl 0622.12011
[195] E. Lepage, Resolution of nonsingularities for Mumford curves, Publ. Res. Inst. Math. Sci. 49 (2013), no. 4, 861-891. · Zbl 1304.14026
[196] Resolution of non-singularities and the absolute anabelian conjecture, arXiv:2306.07058 [math.AG] (2023)
[197] S. Mochizuki, The local pro-p anabelian geometry of curves, Inventiones Mathemat-icae 138 (1999), 319-423. · Zbl 0935.14019
[198] The absolute anabelian geometry of hyperbolic curves, Galois theory and modular forms, Kluwer Academic publishers, 2003, 77-122.
[199] Topics in anabelian geometry II: Decomposition groups and endomor-phisms, J. Math. Sci. Univ Tokyo 20 (2013), 171-269. · Zbl 1367.14011
[200] S. Mochizuki and S. Tsujimura, Resolution of Nonsingularities, Point-theoreticity, and Metric-admissibility for p-adic Hyperbolic Curves, RIMS preprint 1974, (2023).
[201] F. Pop and J. Stix, Arithmetic in the fundamental group of a p-adic curve. On the p-adic section conjecture for curves, Journal für die reine und angewandte Mathematik (Crelles Journal), vol. 2017, no. 725, 2017, pp. 1-40. · Zbl 1401.14135
[202] M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), 103-125. · Zbl 0505.14011
[203] A.Tamagawa, The Grothendieck conjecture for affine curves, Compositio Math. 109 (1997), 135-194 · Zbl 0899.14007
[204] Resolution of nonsingularities of families of curves, Publ. Res. Inst. Math. Sci. 40 (2004), no. 4, 1291-1336. References · Zbl 1078.14037
[205] J.P. Serre, Groupes linéaires modulo p et points d’ordere fini des varietés abéliennes, Note of a cours at Collège de France (1986).
[206] M. Stoll, Finite descent obstructions and rational points on curves, Algebra & Number Theory 1 (2007), 349-391. · Zbl 1167.11024
[207] J. Stix, Rational points and arithmetic of fundamental groups: Evidence for the section conjecture, Vol. 2054, (2012), Springer.
[208] Y. Hoshi, Conditional results on the birational section conjecture over small number fields, Automorphic Forms and Galois Representations. vol. 2, (2014), 187-230, London Math. Soc. Lecture Note Ser., 415, Cambridge Univ. Press, Cambridge. · Zbl 1353.14038
[209] W. Porowski, Locally conjugate Galois sections, preprint (2023) (in preparation). References
[210] H. Nakamura, D. Shiraishi. Landen’s trilogarithm functional equation and ℓ-adic Ga-lois multiple polylogarithms. to appear in “Low Dimensional Topology and Number Theory” Springer Proceedings in Mathematics & Statistics.
[211] H. Nakamura, Z. Wojtkowiak, Tensor and homotopy criteria for functional equations of ℓ-adic and classical iterated integrals. Non-abelian fundamental groups and Iwasawa theory, 258-310, London Math. Soc. Lecture Note Ser., 393, Cambridge Univ. Press, Cambridge, 2012. · Zbl 1271.11068
[212] D. Shiraishi. Duality-reflection formulas of multiple polylogarithms and their ℓ-adic Galois analogues. to appear in Math. J. Okayama Univ. arXiv:2307.09403 [math.NT] (2023)
[213] D. Shiraishi. Spence-Kummer’s trilogarithm functional equation and the underlying geometry, arXiv:2307.09414 [math.NT] (2023)
[214] Z. Wojtkowiak, On ℓ-adic iterated integrals, I -Analog of Zagier Conjecture, Nagoya Math. J., 176 (2004), 113-158. · Zbl 1160.11333
[215] Z. Wojtkowiak, On ℓ-adic iterated integrals, II -Functional equations and ℓ-adic polylogarithms, Nagoya Math. J., 177 (2005), 117-153. · Zbl 1161.11363
[216] Z. Wojtkowiak, On ℓ-adic iterated integrals, III -Galois actions on fundamental groups, Nagoya Math. J., 178 (2005), 1-36. · Zbl 1134.11331
[217] geometrically connected curve over K of genus g greater than one and write J for its Jacobian variety. Given x 0 ∈ X(K), we have the Albanese embedding ι x0 : X ֒→ J, x → [x -x 0 ].
[218] Write J(K) tors for the torsion subgroup of J(K) and X tors for ι x0 (X)(K) ∩ J(K) tors .
[219] Quasi-supersingular finite flat commutative group schemes Motivated by Hoshi’s solution of the (generalized) Coleman conjecture in the case that J has superspecial (good) reduction (cf. [Hos22], Theorem E), we consider the following problem: Problem 1. Is the action of I K on X tors trivial if J has supersingular (good) reduction over K? We try to approach this problem in the same way as Hoshi’s strategy in the proof of [Hos22], Theorem E. We refer to this strategy as the [Hos22]-strategy, tentatively in this report. To explain the strategy, we prepare a few terminologies. Let n be a non-negative integer and G a p-torsion finite flat commutative group scheme over W of rank p 2n . Write G for the special fiber of G. Definition 1.
[220] Let E be an elliptic curve over W . We shall say that E is supersingular if the special fiber of E is a supersingular elliptic curve over k.
[221] We shall say that G (respectively, G) is superspecial if the following con-dition is satisfied: there exist supersingular elliptic curves E i /W (respec-tively, E i /k) (0 < i ≤ n) such that G ≃ ⊕ 0<i≤n E i [p] (respectively, G ≃ ⊕ 0<i≤n E i [p]).
[222] Here, for a commutative group scheme A/T and a positive integer m, we write A[m] for the kernel of m A : A → A, where m A stands for the multiplication by m.
[223] We shall say that G (respectively, G) is quasi-supersingular if the follow-ing condition is satisfied: there exist a sequence of p-torsion finite flat commutative group schemes over W (respectively, k)
[224] G = G n ⊃ G n-1 ⊃ • • • ⊃ G 1 ⊃ G 0 = 0 (respectively, G = G n ⊃ G n-1 ⊃ • • • ⊃ G 1 ⊃ G 0 = 0) and supersingular elliptic curves E i /W (respectively, E i /k) (0 < i ≤ n) such that G i /G i-1 ≃ E i [p] (respectively, G i /G i-1 ≃ E i [p]) (0 < i ≤ n).
[225] For a quasi-supersingular G (respectively, G), we shall call a sequence as above a qss sequence of G (respectively, G).
[226] When the dimensions of the simple factors of the semisimplification of the action of I K on the group of K-rational points of the generic fiber G K of G are n 1 ≥ n 2 ≥ • • • , we shall refer to [n 1 , n 2 , . . .] as the Raynaud type of G K . References
[227] R. F. Coleman, Ramified torsion points on curves, Duke Math. J. 54 (1987), no. 2, 615-640. · Zbl 0626.14022
[228] J.-M. Fontaine, G. Laffaille, Construction de représentations p-adiques, Ann. Sci. École. Norm. Sup. (4) 15 (1982), no. 4, 547-608. · Zbl 0579.14037
[229] Y. Hoshi, On ramified torsion points on a curve with stable reduction over an absolutely unramified base, Osaka J. Math. 54 (2017), no. 4, 767-787. · Zbl 1390.14078
[230] Y. Hoshi, Pseudo-rigid p-torsion finite flat commutative group schemes, J. Number Theory 229 (2021), 261-276. · Zbl 1469.14098
[231] Y. Hoshi, Ramification of torsion points on a curve with superspecial reduction over an absolutely unramified base, Tohoku Math. J. (2) 74 (2022), no. 4, 521-534. · Zbl 1504.14058
[232] A. Tamagawa, Ramification of torsion points on curves with ordinary semistable Jaco-bian varieties, Duke Math. J. 106 (2001), no. 2, 281-319. · Zbl 1010.14007
[233] M. Raynaud, Schémas en groupe de type (p, . . . , p), Bull. Soc. Math. France 102 (1974), 241-280. · Zbl 0325.14020
[234] M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), no. 1, 207-233. Algebraic Dependence and Milnor K-theory Adam Topaz References · Zbl 0564.14020
[235] F. Bogomolov and Y. Tschinkel, Milnor K 2 and field homomorphisms, Geometry, anal-ysis, and algebraic geometry. MA, USA, May 2008. MA: International Press, 2009, pp. 223-244. · Zbl 1247.19002
[236] A. Cadoret and A. Pirutka, Reconstructing function fields from Milnor K-theory, Alge-bra Number Theory 15 (2021), no. 9, 2261-2288. · Zbl 1492.19002
[237] D. Evans and E. Hrushovski, Projective planes in algebraically closed fields, Proc. Lond. Math. Soc. (3) 62 (1991), no. 1, 1-24. · Zbl 0752.51002
[238] D. Evans and E. Hrushovski, The automorphism group of the combinatorial geometry of an algebraically closed field, J. Lond. Math. Soc., II. Ser. 52 (1995), no. 2, 209-225. · Zbl 0854.03039
[239] J. Gismatullin, Combinatorial geometries of field extensions, Bull. Lond. Math. Soc. 40 (2008), no. 5, 789-800. · Zbl 1153.03014
[240] A. Topaz, Algebraic dependence and Milnor K-theory, arXiv:2211.14665 [math.KT] 23 p, (2023). Reporters: Shun Ishii (Kyoto) and Béranger Seguin (Oberwolfach)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.