×

Combinatorial Belyi cuspidalization and arithmetic subquotients of the Grothendieck-Teichmüller group. (English) Zbl 1460.14068

Summary: In this paper, we develop a certain combinatorial version of the theory of Belyi cuspidalization developed by Mochizuki. Write \({\overline{\mathbb{Q}}} \subseteq \mathbb{C}\) for the subfield of algebraic numbers \(\in \mathbb{C} \). We then apply this theory of combinatorial Belyi cuspidalization to certain natural closed subgroups of the Grothendieck-Teichmüller group associated to the field of \(p\)-adic numbers [where \(p\) is a prime number] and to stably \(\times \mu\)-indivisible subfields of \({\overline{\mathbb{Q}}} \), i.e., subfields for which every finite field extension satisfies the property that every nonzero divisible element in the field extension is a root of unity.

MSC:

14H30 Coverings of curves, fundamental group
Full Text: DOI

References:

[1] G. V. Belyi, On Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat.43(1979), 267-276. English translation in Math. USSR Izv.14(1980), 247-256. Zbl 0409.12012Zbl 0429.12004MR 0534593 · Zbl 0429.12004
[2] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial anabelian geometry of hyperbolic curves I: Inertia groups and profinite Dehn twists,Galois-Teichm¨uller theory and arithmetic geometry, Advanced Studies in Pure Mathematics 63, Mathematical Society of Japan, 2012, 659-811.Zbl 1321.14018MR 3051259 · Zbl 1321.14018
[3] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial anabelian geometry of hyperbolic curves II: Tripods and combinatorial cuspidalization, RIMS Preprint1762 (November 2012), available athttp://www.kurims.kyoto-u.ac.jp/ motizuki/. · Zbl 1321.14018
[4] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial anabelian geometry of hyperbolic curves III: Tripods and Tempered fundamental groups, RIMS Preprint1763 (November 2012), available athttp://www.kurims.kyoto-u.ac.jp/ motizuki/. · Zbl 1321.14018
[5] N. Katz and S. Lang, Finiteness theorems in geometric classfield theory, with an appendix by Kenneth A. Ribet, Enseign. Math. (2)27(1981), 285-319.Zbl 0495.14011 MR 0659153 · Zbl 0495.14011
[6] N. Koblitz,p-adic numbers,p-adic analysis, and zeta-functions, Graduate Texts in Mathematics 58, Springer, 1984.Zbl 0364.12015MR 0754003
[7] E. Lepage, Resolution of nonsingularities for Mumford curves, Publ. Res. Inst. Math. Sci. 49(2013), 861-891.Zbl 1304.14026MR 3141726 · Zbl 1304.14026
[8] S. Mochizuki, The local pro-panabelian geometry of curves, Invent. Math.138(1999), 319-423.Zbl 0935.14019MR 1720187 · Zbl 0935.14019
[9] S. Mochizuki, Topics surrounding the anabelian geometry of hyperbolic curves, in Galois groups and fundamental groups, Mathematical Sciences Research Institute Publications 41, Cambridge University Press, 2003, 119-165.Zbl 1053.14029MR 2012215 · Zbl 1053.14029
[10] S. Mochizuki, Semi-graphs of anabelioids, Publ. Res. Inst. Math. Sci.42(2006), 221- 322.Zbl 1113.14025MR 2215441 · Zbl 1113.14025
[11] S. Mochizuki, Absolute anabelian cuspidalizations of proper hyperbolic curves, J. Math. Kyoto Univ.47(2007), 451-539.Zbl 1143.14305MR 2402513 · Zbl 1143.14305
[12] S. Mochizuki, A combinatorial version of the Grothendieck conjecture, Tohoku Math. J. (2)59(2007), 455-479.Zbl 1129.14043MR 2365351 · Zbl 1129.14043
[13] S. Mochizuki, On the combinatorial cuspidalization of hyperbolic curves, Osaka J. Math.47(2010), 651-715.Zbl 1207.14032MR 2768498 · Zbl 1207.14032
[14] S. Mochizuki, Topics in absolute anabelian geometry II: Decomposition groups and endomorphisms, J. Math. Sci. Univ. Tokyo20(2013), 171-269.Zbl 1367.14011 MR 3154380 · Zbl 1367.14011
[15] S. Mochizuki, Topics in absolute anabelian geometry III: Global reconstruction algorithms, J. Math. Sci. Univ. Tokyo 22 (2015), 939-1156.Zbl 1358.14024MR 3445958 · Zbl 1358.14024
[16] S. Mochizuki and A. Tamagawa, The algebraic and anabelian geometry of configuration spaces, Hokkaido Math. J.37(2008), 75-131.Zbl 1143.14306MR 2395079 · Zbl 1143.14306
[17] H. Moon, On the Mordell-Weil groups of jacobians of hyperelliptic curves over certain elementary abelian 2-extensions, Kyungpook Math. J.49(2009), 419-424.Zbl 1196.11082 MR 2601871 · Zbl 1196.11082
[18] J. Neukirch,Algebraic number theory, Grundlehren der Mathematischen Wissenschaften 322, Springer, 1999.Zbl 0956.11021MR 1697859 · Zbl 0956.11021
[19] J. Neukirch, A. Schmidt, and K. Wingberg,Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften 323, Springer, 2000.Zbl 0948.11001MR 1737196 · Zbl 0948.11001
[20] J.-P. Serre,Local fields, Graduate Texts in Mathematics 67, Springer, 1979. Zbl 0423.12016MR 0554237 · Zbl 0423.12016
[21] J. Stix, On cuspidal sections of algebraic fundamental groups, inGalois-Teichm¨uller theory and arithmetic geometry, Advanced Studies in Pure Mathematics 63, Mathematical Society of Japan, 2012, 519—563.Zbl 1321.14027MR 3051254 · Zbl 1321.14027
[22] A. Tamagawa, The Grothendieck conjecture for affine curves, Compos. Math.109 (1997), 135-194.Zbl 0899.14007MR 1478817 · Zbl 0899.14007
[23] A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.