×

Serre weight conjectures for \(p\)-adic unitary groups of rank 2. (English) Zbl 1521.11035

The Langlands program is a vast web of deep conjectures regarding the correspondences between representations of reductive groups over local and global fields and the representations of the Galois groups of those fields, as well as the functorial liftings of representations of different groups. The classical Langlands program is concerned with complex representations, that is, the representations in vector spaces over the field \(\mathbb{C}\) of complex numbers. There are various extensions of the classical correspondence, which consider reductive and Galois groups over different fields and representations in vector spaces over an appropriate field. One of the more mysterious among these is the mod \(p\) Langlands program, where \(p\) is a prime number. See [C. Breuil, ICM 2010, 203–230 (2011; Zbl 1368.11123)] for a nice survey of the mod \(p\) Langlands correspondence. The paper under review considers the mod \(p\) local Langlands correspondence for the unitary groups of rank two.
The mod \(p\) local Langlands correspondence is well understood only in the case of the general linear group \(\mathrm{GL}_2\) over the field \(\mathbb{Q}_p\) of \(p\)-adic numbers due to works [P. Colmez, Astérisque 330, 281–509 (2010; Zbl 1218.11107); P. Colmez et al., Camb. J. Math. 2, No. 1, 1–47 (2014; Zbl 1312.11090); M. Emerton, “Local-global compatibility in the \(p\)-adic Langlands programme for \(\mathrm{GL}_{2/\mathbb{Q}}\)”, Preprint, https://math.uchicago.edu/~emerton/pdffiles/lg.pdf]. Let \(\overline{\mathbb{Q}}_p\) be a fixed algebraic closure of \(\mathbb{Q}_p\), and let \(\overline{\mathbb{F}}_p\) denote its residue field. Then, the mod \(p\) local Langlands correspondence for \(\mathrm{GL}_2\) over \(\mathbb{Q}_p\) is the correspondence between smooth admissible representations of \(\mathrm{GL}_2(\mathbb{Q}_p)\) in vector spaces over \(\overline{\mathbb{F}}_p\) and the continuous representations of the Galois group of the extension \(\overline{\mathbb{Q}}_p / \mathbb{Q}_p\) in two-dimensional vector spaces over \(\overline{\mathbb{F}}_p\). The correspondence is compatible with the classical Langlands correspondence, i.e., the correspondence of representations in vector spaces over \(\mathbb{C}\), it should be realized in the torsion cohomology of the associated Shimura variety, and satisfy the local-global compatibility.
For any other reductive group, even for the general linear group \(\mathrm{GL}_n\) with \(n>2\), and over any local field other than \(\mathbb{Q}_p\), the local mod \(p\) correspondence is still highly conjectural. Nevertheless, the expected consequences of the mod \(p\) Langlands correspondence are already studied. In particular, this paper considers the weight part of Serre’s conjecture, which is a statement about the Serre weights of the Galois parameter of a representation.
This paper considers the case of the unramified unitary group \(\mathbf{U}_2\) in two variables associated to an unramified quadratic extension \(K_2/K\) of \(p\)-adic fields, where \(p\) is an odd prime number. It is a quasi-split group. In this case, K. Buzzard and T. Gee [London Mathematical Society Lecture Note Series 414, 135–187 (2014; Zbl 1377.11067)] defined the so called \(C\)-group \({}^C\mathbf{U}_2\), which is expected to play the role of the Langlands dual group in the mod \(p\) Langlands correspondence. The local \(L\)-parameter in this setting is a continuous homomorphism from the Galois group of the extension \(\mathbb{Q}_p/K\) to the group \({}^C\mathbf{U}_2(\overline{\mathbb{F}}_p)\), compatible with the projection of the latter to the Galois group of the extension \(K_2/K\). The task of establishing the mod \(p\) local Langlands correspondence would be a construction of an \(L\)-packet of smooth admissible representations of \(\mathbf{U}_2(K)\) in a vector space over \(\overline{\mathbb F}_p\) associated to each \(L\)-parameter. However, this final goal is still out of reach.
Therefore, the route taken by this paper is to study the problem in the global context, that is, by considering a unitary group over a number field for which the local problem appears at finite places, and exploit the local–global compatibility, under certain technical assumptions. More precisely, let \(F^+\) be a totally real finite extension of the field \(\mathbb{Q}\) of rational numbers, and let \(F/F^+\) be a \(\mathrm{CM}\) quadratic extension of \(F^+\). Let \(\mathbf{G}\) be a unitary group in two variables associated to the extension \(F/F^+\). In order to study the local problem in the global context of the group \(\mathbf{G}\), it is assumed that \(p\) is unramified in \(F\) and that every place of \(F^+\) lying above \(p\) is unramified and inert in \(F\), so that \(\mathbf{G}\) at places over \(p\) is not split, i.e., it is the unramified unitary group. This differs from the previous work [T. Gee et al., J. Am. Math. Soc. 27, No. 2, 389–435 (2014; Zbl 1288.11045); T. Barnet-Lamb et al., Math. Ann. 356, No. 4, 1551–1598 (2013; Zbl 1339.11064)] on unitary groups in the global context, in which the assumption is that the group is split at places above \(p\). Additional assumption on \(\mathbf{G}\) is that it is a definite unitary group at Archimedean places.
The global \(L\)-parameter in this setting is a continuous homomorphism from the Galois group of the extension \(\overline{\mathbb{Q}} / F^+\), where \(\overline{\mathbb{Q}}\) is a fixed algebraic closure of \(\mathbb{Q}\), to the \(C\)-group \({}^C \mathbf{U}_2(\overline{\mathbb{F}}_p)\). Let \(\overline{r}\) be such a global \(L\)-parameter. The assumption on the parameter is that \(\overline{r}\) is associated to a nonzero Hecke eigenclass in the mod \(p\) cohomology with infinite level at \(p\) of the unitary group \(\mathbf{G}\) as above. Furthermore, the parameter \(\overline{r}\) is assumed to be semisimple and sufficiently generic at all places above \(p\), unramified outside \(p\), and that its multiplier is a cyclotomic character.
The set of Serre weights in which the global \(L\)-parameter \(\overline{r}\) is modular is denoted by \(W_{\mathrm{mod}}(\overline{r})\). It is the set of representations of the product of \(\mathbf{U}_2(\mathcal{O}_{F_v^+})\) over all places \(v\) of \(F^+\) lying over \(p\), where \(\mathcal{O}_{F_v^+}\) is the ring of integers of \(F_v^+\), which appear in the socle of the Hecke isotypic component attached to the \(L\)-parameter \(\overline{r}\) in the mod \(p\) cohomology of \(\mathbf{G}\).
On the other hand, T. Gee et al. [J. Eur. Math. Soc. (JEMS) 20, No. 12, 2859–2949 (2018; Zbl 1456.11093)] made a representation theoretic construction of certain set \(W^?(\overline{r})\) of weights associated to the global \(L\)-parameter \(\overline{r}\). They conjectured that this set of Serre weights coincides with the set of Serre weights in which \(\overline{r}\) is modular. The main result of this paper is that, under all the assumptions on the global \(L\)-parameter \(\overline{r}\) explained above and certain additional technical assumptions that we omit in this review, the conjecture on Serre weights for the unitary group \(\mathbf{U}_2\) holds. In other words, \[ W^?(\overline{r})=W_{\mathrm{mod}}(\overline{r}). \]
The proof of the inclusion \(W^?(\overline{r})\supseteq W_{\mathrm{mod}}(\overline{r})\) uses a new argument which is based on the global base change from the unitary group to \(\mathrm{GL}_2\). Thus, the problem is reduced to the case of \(\mathrm{GL}_2\), which is already settled by T. Gee [Invent. Math. 184, No. 1, 1–46 (2011; Zbl 1280.11029)]. The base change argument can be viewed as the evidence for the mod \(p\) base change is the mod \(p\) Langlands program. The opposite inclusion \(W^?(\overline{r})\subseteq W_{\mathrm{mod}}(\overline{r})\) is obtained using a modification of the patching functor of A. Caraiani [Camb. J. Math. 4, No. 2, 197–287 (2016; Zbl 1403.11073)], strengthened Taylor-Wiles-Kisin conditions and the explicit description of \({}^C\mathbf{U}_2\)-valued local deformation rings.
Reviewer: Neven Grbac (Pula)

MSC:

11F80 Galois representations
11F33 Congruences for modular and \(p\)-adic modular forms
11F55 Other groups and their modular and automorphic forms (several variables)
20C33 Representations of finite groups of Lie type

References:

[1] 10.24033/bsmf.2673 · Zbl 1319.11029 · doi:10.24033/bsmf.2673
[2] 10.1016/j.jnt.2005.04.006 · Zbl 1077.22021 · doi:10.1016/j.jnt.2005.04.006
[3] 10.2977/PRIMS/31 · Zbl 1264.11044 · doi:10.2977/PRIMS/31
[4] 10.1007/s00208-012-0893-y · Zbl 1339.11064 · doi:10.1007/s00208-012-0893-y
[5] 10.4007/annals.2014.179.2.3 · Zbl 1310.11060 · doi:10.4007/annals.2014.179.2.3
[6] ; Bellaïche, Joël; Chenevier, Gaëtan, Families of Galois representations and Selmer groups. Astérisque, 324 (2009) · Zbl 1192.11035
[7] 10.1112/S0010437X11005264 · Zbl 1259.11058 · doi:10.1112/S0010437X11005264
[8] 10.2140/ant.2019.13.333 · Zbl 1455.11077 · doi:10.2140/ant.2019.13.333
[9] ; Berger, Laurent, La correspondance de Langlands locale p-adique pour GL2(ℚp), Séminaire Bourbaki, 2009/2010. Astérisque, 339 (2011) · Zbl 1356.11082
[10] 10.5802/aif.2542 · Zbl 1210.22009 · doi:10.5802/aif.2542
[11] ; Breuil, Christophe, The emerging p-adic Langlands programme, Proceedings of the International Congress of Mathematicians, II, 203 (2010) · Zbl 1368.11123
[12] 10.1515/crelle-2012-0083 · Zbl 1314.11036 · doi:10.1515/crelle-2012-0083
[13] 10.1215/00127094-2916104 · Zbl 1321.22019 · doi:10.1215/00127094-2916104
[14] 10.1215/S0012-7094-02-11522-1 · Zbl 1042.11030 · doi:10.1215/S0012-7094-02-11522-1
[15] 10.1090/S0065-9266-2011-00623-4 · Zbl 1245.22010 · doi:10.1090/S0065-9266-2011-00623-4
[16] 10.1017/CBO9781107446335.006 · Zbl 1377.11067 · doi:10.1017/CBO9781107446335.006
[17] 10.1215/00127094-2010-052 · Zbl 1227.11070 · doi:10.1215/00127094-2010-052
[18] 10.1215/00127094-1723706 · Zbl 1405.22028 · doi:10.1215/00127094-1723706
[19] 10.2140/ant.2014.8.1597 · Zbl 1310.11061 · doi:10.2140/ant.2014.8.1597
[20] 10.24033/asens.2354 · Zbl 1450.11049 · doi:10.24033/asens.2354
[21] 10.4310/CJM.2016.v4.n2.a2 · Zbl 1403.11073 · doi:10.4310/CJM.2016.v4.n2.a2
[22] 10.1090/tran/6973 · Zbl 1442.11087 · doi:10.1090/tran/6973
[23] 10.1007/s10240-008-0016-1 · Zbl 1169.11020 · doi:10.1007/s10240-008-0016-1
[24] ; Colmez, Pierre, Représentations de 𝔾𝕃2(ℚp) et (ϕ,Γ)-modules, Représentations p-adiques de groupes p-adiques, II : Représentations de 𝔾𝕃2(ℚp) et (ϕ,Γ)-modules. Astérisque, 330, 281 (2010) · Zbl 1218.11107
[25] 10.4310/CJM.2014.v2.n1.a1 · Zbl 1312.11090 · doi:10.4310/CJM.2014.v2.n1.a1
[26] 10.2307/1971021 · Zbl 0336.20029 · doi:10.2307/1971021
[27] 10.1017/CBO9780511721267.006 · Zbl 1230.11069 · doi:10.1017/CBO9780511721267.006
[28] 10.1215/00127094-2266365 · Zbl 1283.11083 · doi:10.1215/00127094-2266365
[29] 10.1007/s00222-014-0517-0 · Zbl 1396.11089 · doi:10.1007/s00222-014-0517-0
[30] ; Ennola, Veikko, On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn. Ser. A I, 323, 1 (1963) · Zbl 0109.26001
[31] 10.1007/s00222-010-0284-5 · Zbl 1280.11029 · doi:10.1007/s00222-010-0284-5
[32] 10.1017/fmp.2014.1 · Zbl 1408.11033 · doi:10.1017/fmp.2014.1
[33] 10.1090/S0894-0347-2013-00775-4 · Zbl 1288.11045 · doi:10.1090/S0894-0347-2013-00775-4
[34] 10.4171/JEMS/826 · Zbl 1456.11093 · doi:10.4171/JEMS/826
[35] ; Grbac, Neven; Schwermer, Joachim, An exercise in automorphic cohomology : the case GL2 over a quaternion algebra, Arithmetic geometry and automorphic forms. Adv. Lect. Math., 19, 209 (2011) · Zbl 1272.11071
[36] 10.1112/S0010437X10005154 · Zbl 1276.11086 · doi:10.1112/S0010437X10005154
[37] ; Harris, Michael; Taylor, Richard, The geometry and cohomology of some simple Shimura varieties. Ann. of Math. Stud., 151 (2001) · Zbl 1036.11027
[38] 10.1215/00127094-2009-036 · Zbl 1232.11065 · doi:10.1215/00127094-2009-036
[39] 10.1112/S0010437X17007357 · Zbl 1420.11089 · doi:10.1112/S0010437X17007357
[40] 10.1016/0021-8693(81)90229-5 · Zbl 0477.20024 · doi:10.1016/0021-8693(81)90229-5
[41] ; Jantzen, Jens Carsten, Representations of algebraic groups. Pure Appl. Math., 131 (1987) · Zbl 0654.20039
[42] 10.2969/jmsj/02930425 · Zbl 0353.20031 · doi:10.2969/jmsj/02930425
[43] 10.1007/978-0-8176-4532-8_7 · Zbl 1184.11052 · doi:10.1007/978-0-8176-4532-8\_7
[44] 10.1090/S0894-0347-07-00576-0 · Zbl 1205.11060 · doi:10.1090/S0894-0347-07-00576-0
[45] 10.4007/annals.2009.170.1085 · Zbl 1201.14034 · doi:10.4007/annals.2009.170.1085
[46] 10.5802/aif.3043 · Zbl 1364.22007 · doi:10.5802/aif.3043
[47] ; Labesse, J.-P., Changement de base CM et séries discrètes, On the stabilization of the trace formula. Stab. Trace Formula Shimura Var. Arith. Appl., 1, 429 (2011) · Zbl 1255.11027
[48] 10.4153/CJM-1979-070-3 · Zbl 0421.12014 · doi:10.4153/CJM-1979-070-3
[49] 10.1016/j.jnt.2019.05.005 · Zbl 1469.11145 · doi:10.1016/j.jnt.2019.05.005
[50] 10.2140/ant.2019.13.1807 · Zbl 1471.11280 · doi:10.2140/ant.2019.13.1807
[51] 10.1007/s00222-017-0762-0 · Zbl 1403.11039 · doi:10.1007/s00222-017-0762-0
[52] 10.1215/00127094-2019-0015 · Zbl 1460.11077 · doi:10.1215/00127094-2019-0015
[53] 10.1017/fmp.2020.1 · Zbl 1452.11066 · doi:10.1017/fmp.2020.1
[54] 10.1017/S1474748020000225 · Zbl 1489.11070 · doi:10.1017/S1474748020000225
[55] 10.1515/9781400882441 · Zbl 0724.11031 · doi:10.1515/9781400882441
[56] ; Serre, Jean-Pierre, Linear representations of finite groups. Grad. Texts in Math., 42 (1977) · Zbl 0355.20006
[57] ; Taylor, Richard, On the meromorphic continuation of degree two L-functions, Doc. Math., Coates’ 60th birthday volume, 729 (2006) · Zbl 1138.11051
[58] 10.1007/s10240-008-0015-2 · Zbl 1169.11021 · doi:10.1007/s10240-008-0015-2
[59] 10.1017/S1474748012000023 · Zbl 1269.11054 · doi:10.1017/S1474748012000023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.