×

Chirality in metric spaces. (English) Zbl 1476.51010

This paper generalizes the concept of chirality in chemistry to chirality in metric spaces which are not necessarily Euclidean. The group of isometric isomorphisms of a metric space is divided into direct isometries and indirect isometries. Then an object having no indirect symmetry is called chiral.
The author shows that this definition is equivalent to the usual definition if we consider an object in Euclidean space. Chirality of other objects such as strings, matrices and graphs is discussed. In conclusion we can consider a molecule in chemistry as an object in Euclidean space or the graph associated to the structural formula. One can be chiral while the other is not.

MSC:

51F99 Metric geometry
58D19 Group actions and symmetry properties

Biographic References:

Deza, Michel

References:

[1] Coppersmith, D.; Petitjean, M., About the optimal density associated to the chiral index of a sample from a bivariate distribution, C. R. Acad. Sci. Paris Sér. I, 340, 8, 599-604 (2005) · Zbl 1066.60014 · doi:10.1016/j.crma.2005.03.011
[2] Darvas, G., Symmetry (2007), Basel: Birkhäuser, Basel · Zbl 1142.00002
[3] Deza, E.; Deza, Mm, Dictionary of Distances (2006), Amsterdam: Elsevier, Amsterdam
[4] Deza, M.; Schulte, E., Editorial on Tessellations, Symmetry Cult. Sci., 22, 1-2, 5 (2011)
[5] Deza, M., Petitjean, M., Markov, K. (eds.) Mathematics of Distances and Applications. Proceedings of the MDA 2012 Conference. ITHEA Publication, Sofia (2012)
[6] Deza, Mm; Deza, E., Encyclopedia of Distances (2016), Berlin: Springer, Berlin · Zbl 1351.51001
[7] Molnár, E., The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitr. Algebra Geom., 38, 2, 261-288 (1997) · Zbl 0889.51021
[8] Molnár, E., Combinatorial construction of tilings by barycentric simplex orbits \((D\) symbols) and their realizations in Euclidean and other homogeneous spaces, Acta Crystallogr., A61, 6, 542-552 (2005) · Zbl 1370.52060 · doi:10.1107/S0108767305026760
[9] Molnár, E.; Szirmai, J., On Nil crystallography, Symmetry Cult. Sci., 17, 1-2, 55-74 (2006)
[10] Petitjean, M., Chiral mixtures, J. Math. Phys., 43, 8, 4147-4157 (2002) · Zbl 1060.60003 · doi:10.1063/1.1484559
[11] Petitjean, M., Chirality and symmetry measures: a transdisciplinary review, Entropy, 5, 3, 271-312 (2003) · Zbl 1078.00503 · doi:10.3390/e5030271
[12] Petitjean, M., From shape similarity to shape complementarity: toward a docking theory, J. Math. Chem., 35, 3, 147-158 (2004) · Zbl 1045.60015 · doi:10.1023/B:JOMC.0000033252.59423.6b
[13] Petitjean, M.: A definition of symmetry. Symmetry Cult. Sci. 18(2-3), 99-119 (2007). https://hal.archives-ouvertes.fr/hal-01552499 · Zbl 1274.58003
[14] Petitjean, M., Chirality in metric spaces, Symmetry Cult. Sci., 21, 1-3, 27-36 (2010) · Zbl 1274.58004
[15] Petitjean, M., The most chiral disphenoid, MATCH Commun. Math. Comput. Chem., 73, 2, 375-384 (2015) · Zbl 1462.05096
[16] Scott, P., The geometries of 3-manifolds, Bull. Lond. Math. Soc., 15, 401-487 (1983) · Zbl 0561.57001 · doi:10.1112/blms/15.5.401
[17] Thomson, W., Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, Appendix H., Sect. 22, Footnote p. 619 (1904), London: Cambridge University Press Warehouse, London
[18] Thurston, Wp, Three-Dimensional Geometry and Topology (1997), Princeton: Princeton University Press, Princeton · Zbl 0873.57001
[19] Weyl, H., Symmetry (1952), Princeton: Princeton University Press, Princeton · Zbl 0046.00406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.