×

Determinant morphism for singular varieties. (English) Zbl 07834221

Summary: Let \(X\) be a (possibly singular) projective variety over an algebraically closed field of any characteristic and let \(\mathcal{F}\) be a coherent sheaf on \(X\). In this article, we define the determinant of \(\mathcal{F}\) in such a way that it agrees with the classical definition of determinant in the case where \(X\) is nonsingular. We study how the Hilbert polynomial of the determinant varies in families of singular varieties. Consider a singular family such that every fiber is a normal, projective variety. Unlike in the case where the family is smooth, the Hilbert polynomial of the determinant does not remain constant on such a family. However, we show that it exhibits an upper semi-continuous behaviour. Using this we give a determinant morphism defined over flat families of coherent sheaves. This morphism coincides with the classical determinant morphism in the smooth case. Finally, we give applications of our results to moduli spaces of semi-stable sheaves on \(X\) and to Hilbert schemes of curves.

MSC:

14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14C05 Parametrization (Chow and Hilbert schemes)
14D20 Algebraic moduli problems, moduli of vector bundles
14D22 Fine and coarse moduli spaces
14H10 Families, moduli of curves (algebraic)
14H60 Vector bundles on curves and their moduli
14L24 Geometric invariant theory
58J52 Determinants and determinant bundles, analytic torsion

References:

[1] W. BARTH, Moduli of vector bundles on the projective plane, Invent. Math. 42 (1977), 63-91. · Zbl 0386.14005
[2] S. BASU, A. DAN and I. KAUR, Generators of the cohomology ring, after Newstead, Proc. Amer. Math. Soc. 150 (2022), 2569-2577. · Zbl 1487.32073
[3] A. BAYER and E. MACRÌ, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math. 198 (2014), 505-590. · Zbl 1308.14011
[4] U. N. BHOSLE, Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves, Ark. Math. 30 (1992), 187-215. · Zbl 0773.14006
[5] W. BRUNS and H. J. HERZOG, “Cohen-Macaulay Rings”, Cambridge University Press, 1998. · Zbl 0909.13005
[6] C. CASAGRANDE, G. CODOGNI and A. FANELLI, The blow-up of P 4 at 8 points and its Fano model, via vector bundles on a del Pezzo surface, Rev. Mat. Complut. 32 (2019), 475-529. · Zbl 1435.14041
[7] A. DAN and I. KAUR, Generalization of a conjecture of Mumford, Adv. Math. 383 (2021), 107676 p. · Zbl 1464.32018
[8] A. DAN and I. KAUR, Hodge conjecture for the moduli space of semi-stable sheaves over a nodal curve, Ann. Mat. Pura Appl. (4) 201 (2022), 2907-2926. · Zbl 1497.14013
[9] S. K. DONALDSON, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), 257-315. · Zbl 0715.57007
[10] G. ELLINGSRUD, R. PIENE and S. A. STRØMME, On the variety of nets of quadrics defin-ing twisted cubics, In: “Space Curves”, F. Ghione, C. Peskine and E. Sernesi (eds.), Lecture Notes in Mathematics, Vol. 1266, Springer, Berlin, Heidelberg, 1981, 84-96. · Zbl 0659.14027
[11] G. ELLINGSRUD and S. STR ÖMME, Bott’s formula and enumerative geometry, J. Amer. Math. Soc. 9 (1996), 175-193. · Zbl 0856.14019
[12] G. ELLINGSRUD and S. A. STRØMME, On the rationality of the moduli space for stable rank-2 vector bundles on P 2 , In: “Singularities, Representation of Algebras, and Vector Bundles”, G. M. Greuel and G. Trautmann (eds.), Lecture Notes in Mathematics, Vol. 1273, Springer, Berlin, Heidelberg, 1987, 363-371. · Zbl 0632.14013
[13] D. GIESEKER and J. LI, Irreducibility of moduli of rank-2 vector bundles on algebraic surfaces, J. Differential Geom. 40 (1994), 23-104. · Zbl 0827.14008
[14] D. GIESEKER and J. LI, Moduli of high rank vector bundles over surfaces, J. Amer. Math. Soc. 9 (1996), 107-151. · Zbl 0864.14005
[15] U. G ÖRTZ and T. WEDHORN, “Algebraic Geometry I. Schemes with Examples and Exer-cises”, Vieweg+Teubner Wiesbaden, 2010. · Zbl 1213.14001
[16] A. GROTHENDIECK, Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. étude locale des schémas et des morphismes de schémas, troisième partie, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 5-255. · Zbl 0144.19904
[17] J. HARRIS, “Algebraic Geometry: a First Course”, Corrected reprint of 1992 original. Grad-uate Texts in Mathematics, Vol. 133 Springer-Verlag, New York, 1995. · Zbl 0779.14001
[18] R. HARTSHORNE, “Algebraic Geometry”, Graduate Texts in Mathematics, Vol. 52, Springer, New York-Heidelberg, 1977. · Zbl 0367.14001
[19] R. HARTSHORNE, Stable reflexive sheaves, Math. Ann. 254 (1980), 121-176. · Zbl 0431.14004
[20] B. HASSETT and S. J. KOV ÁCS, Reflexive pull-backs and base extension, J. Algebraic Geom. 13 (2004), 233-248. · Zbl 1081.14017
[21] K. HULEK, Stable rank-2 vector bundles on P 2 with c 1 odd, Math. Ann. 242 (1979), 241-266. · Zbl 0407.32013
[22] D. HUYBRECHTS and M. LEHN, “The Geometry of Moduli Spaces of Sheaves”,Second edition. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. · Zbl 1206.14027
[23] I. KAUR, “The C 1 Conjecture for the Moduli Space of Stable Vector Bundles with Fixed Determinant on a Smooth Projective Curve”, Ph.D. thesis, Freie Universität Berlin, 2016.
[24] I. KAUR, Existence of semistable vector bundles with fixed determinants, J. Geom. Phys. 138 (2019), 90-102. · Zbl 1423.14077
[25] I. KAUR, A pathological case of the C 1 conjecture in mixed characteristic, Math. Proc. Cambridge Philos. Soc. 167 (2019), 61-64. · Zbl 1433.14029
[26] A. KING and A. SCHOFIELD, Rationality of moduli of vector bundles on curves, Indag. Math. (N.S.) 10 (1999), 519-535. · Zbl 1043.14502
[27] S. L. KLEIMAN and A. B. ALTMAN, Bertini’s theorem for hypersurface sections contain-ing a subscheme, Comm. Algebra 7 (1979), 775-790. · Zbl 0401.14002
[28] A. LANGER, Moduli spaces of sheaves in mixed characteristic, Duke Math. J. 124 (2004), 571-586. · Zbl 1086.14036
[29] A. LANGER, Semistable sheaves in positive characteristic, Ann. of Math. (2) 159 (2004), 251-276. · Zbl 1080.14014
[30] A. LANGER, Moduli spaces and Castelnuovo-Mumford regularity of sheaves on surfaces, Amer. J. Math. 128 (2006), 373-417. · Zbl 1102.14030
[31] A. LANGER, Moduli spaces of principal bundles on singular varieties, Kyoto J. Math. 53 (2013), 3-23. · Zbl 1270.14003
[32] D. S. NAGARAJ and C. S. SESHADRI, Degenerations of the moduli spaces of vector bun-dles on curves I, Proc. Indian Acad. Sci. Math. Sci. 107 (1997), 101-137. · Zbl 0922.14023
[33] K. G. O’GRADY, Moduli of vector bundles on projective surfaces: some basic results, Invent. Math. 123 (1996), 141-207. · Zbl 0869.14005
[34] R. PIENE and M. SCHLESSINGER, On the Hilbert scheme compactification of the space of twisted cubics, Amer. J. Math. 107 (1985), 761-774. · Zbl 0589.14009
[35] A. SCHMITT, On the modular interpretation of the Nagaraj-Seshadri locus, J. Reine An-gew. Math. 670 (2012), 145-172. · Zbl 1268.14036
[36] E. SERNESI, “Deformations of Algebraic Schemes”, Grundlehren der mathematischen Wissenschaften, Vol. 334, Springer, Berlin-Heidelberg, 2006. · Zbl 1102.14001
[37] C. SIMPSON, Moduli of representations of the fundamental group of a smooth projective variety I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47-129. · Zbl 0891.14005
[38] C. SIMPSON, Moduli of representations of the fundamental group of a smooth projective variety II, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 5-79. · Zbl 0891.14006
[39] B. XIA, Hilbert scheme of twisted cubics as a simple wall-crossing, Trans. Amer. Math. Soc. 370 (2018), 5535-5559. · Zbl 1390.14059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.