×

Ribaucour transformations and their singularities. (English) Zbl 1506.57018

The Ribaucour transformation generalises the notion of parallel surfaces and Darboux transformations. This paper introduces the construction of Ribaucour transforms via the Cauchy-Kovalevskaya theorem. The paper gives an explicit integral formula of Ribaucour transformations for surfaces of revolution. The paper also studies the singularities appearing on Ribaucour transforms and gives the criteria for cuspidal edges, swallowtails, cuspidal cross caps, and \(D_4^\pm\) singularities.
In Section 2, Theorem 1 states that any Ribaucour transformation can be obtained by solving the damped wave equation with the help of the Cauchy-Kovalevskaya theorem. Theorem 2 provides an explicit integral formula for Ribaucour transformations for surfaces of revolution, which is used to create examples in later sections. The examples demonstrate the ability to construct non-linear Weingarten and non-isothermic Ribaucour transformations from surfaces of revolution. The Ribaucour transformations can be applied locally to any regular surface immersed in a space form, specifically rotational surfaces, without imposing any other geometric property on the transformed surface. In previous articles, the transformations were required to preserve the geometric property of being linear Weingarten (which includes surfaces of constant Gaussian or mean curvature), however in this paper the Ribaucour transformations are applied to rotational surfaces in \(\mathbb{R}^3\), without imposing any other geometric property on the transformed surface.
In Section 3, the paper analyses singularities on Ribaucour transformations and establishes criteria for cuspidal edges, swallowtails, cuspidal cross caps, and \(D_4^\pm\) singularities. Parallel surfaces are noted as typical examples of Ribaucour transformations and the results of previous studies on singularities on parallel surfaces are generalized to Ribaucour transformations and some geometrical analysis is given.

MSC:

57R45 Singularities of differentiable mappings in differential topology
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
Full Text: DOI

References:

[1] Bianchi, L.: Lezioni di geometria differenziale. Seconda edizione, riveduta e cosiderevolmente aumentata, in due volumi (1903) (Italian) · JFM 34.0670.01
[2] Blaschke, W., Vorlesungen über Differentialgeometrie III (1929), Berlin: Springer Grundlehren XXIX, Berlin · JFM 55.0422.01
[3] Burstall, F.; Hertrich-Jeromin, U., The Ribaucour transformation in Lie sphere geometry, Differ. Geom. Appl., 24, 5, 503-520 (2006) · Zbl 1104.53050 · doi:10.1016/j.difgeo.2006.04.007
[4] Burstall, F.; Hertrich-Jeromin, U.; Lara Miro, M., Ribaucour coordinates, Beitr. Algebra Geom., 60, 1, 39-55 (2019) · Zbl 1433.53010 · doi:10.1007/s13366-018-0391-9
[5] Cho, J., Pember, M., Szewieczek, G.: Constrained elastic curves and surfaces with spherical curvature lines (preprint) · Zbl 1408.53014
[6] Corro, AV; Ferreira, W.; Tenenblat, K., On Ribaucour transformations for hypersurfaces, Mat. Contemp., 17, 137-160 (1999) · Zbl 1018.53004
[7] Corro, AV; Ferreira, W.; Tenenblat, K., Minimal surfaces obtained by Ribaucour transformations, Geom. Dedicata, 96, 117-150 (2003) · Zbl 1068.53011 · doi:10.1023/A:1022139119383
[8] Corro, AV; Ferreira, W.; Tenenblat, K., Ribaucour transformations for constant mean curvature and linear Weingarten surfaces, Pac. J. Math., 212, 2, 265-296 (2003) · Zbl 1059.53009 · doi:10.2140/pjm.2003.212.265
[9] Corro, AV; Tenenblat, K., Ribaucour transformations revisited, Commun. Anal. Geom., 12, 5, 1055-1082 (2004) · Zbl 1090.53055 · doi:10.4310/CAG.2004.v12.n5.a4
[10] Corro, AV; Martínez, A.; Tenenblat, K., Ribaucour transformations for flat surfaces in the hyperbolic 3-space, J. Math. Anal. Appl., 412, 2, 720-743 (2014) · Zbl 1308.53062 · doi:10.1016/j.jmaa.2013.10.080
[11] Cui, NW; Tenenblat, K., New minimal surfaces in the hyperbolic space, Sci. China Math., 60, 9, 1679-1704 (2017) · Zbl 1390.53057 · doi:10.1007/s11425-016-0356-1
[12] Dajczer, M.; Florit, LA; Tojeiro, R., The vectorial Ribaucour transformation for submanifolds and applications, Trans. Am. Math. Soc., 359, 10, 4977-4997 (2007) · Zbl 1124.53009 · doi:10.1090/S0002-9947-07-04211-0
[13] Dajczer, M.; Tojeiro, R., An extension of the classical Ribaucour transformation, Proc. Lond. Math. Soc. (3), 85, 1, 211-232 (2002) · Zbl 1028.53057 · doi:10.1112/S0024611502013552
[14] Dajczer, M.; Tojeiro, R., Commuting Codazzi tensors and the Ribaucour transformation for submanifolds, Results Math., 44, 3-4, 258-278 (2003) · Zbl 1055.53010 · doi:10.1007/BF03322986
[15] Eisenhart, LP, Deformable transformations of Ribaucour, Trans. Am. Math. Soc., 17, 4, 437-458 (1916) · JFM 46.1055.01 · doi:10.1090/S0002-9947-1916-1501052-0
[16] Fujimori, S.; Saji, K.; Umehara, M.; Yamada, K., Singularities of maximal surfaces, Math. Z., 259, 4, 827-848 (2008) · Zbl 1145.57026 · doi:10.1007/s00209-007-0250-0
[17] Fukui, T.; Hasegawa, M., Singularities of parallel surfaces, Tohoku Math. J. (2), 64, 3, 387-408 (2012) · Zbl 1257.53005 · doi:10.2748/tmj/1347369369
[18] Goulart, C.; Tenenblat, K., On Bäcklund and Ribaucour transformations for surfaces with constant negative curvature, Geom. Dedicata, 181, 83-102 (2016) · Zbl 1360.53013 · doi:10.1007/s10711-015-0113-5
[19] Kokubu, M.; Rossman, W.; Saji, K.; Umehara, M.; Yamada, K., Singularities of flat fronts in hyperbolic space, Pac. J. Math., 221, 2, 303-351 (2005) · Zbl 1110.53044 · doi:10.2140/pjm.2005.221.303
[20] Lemes, M.; Roitman, P.; Tenenblat, K.; Tribuzy, R., Lawson correspondence and Ribaucour transformations, Trans. Am. Math. Soc., 364, 12, 6229-6258 (2012) · Zbl 1277.53055 · doi:10.1090/S0002-9947-2012-05440-7
[21] Ogata, Y.; Teramoto, K., Constant Mean Curvature Surfaces with \(D_4\)-Singularities, Singularities in Generic Geometry, Advanced Studies in Pure Mathematics, 345-363 (2018), Tokyo: Mathematics Society Japan, Tokyo · Zbl 1420.53068
[22] Pember, M.; Szewieczek, G., Channel surfaces in Lie sphere geometry, Beitr. Algebra Geom., 59, 4, 779-796 (2018) · Zbl 1408.53014 · doi:10.1007/s13366-018-0394-6
[23] Petrovsky, IG, Lectures on Partial Differential Equations (1954), New York-London: Interscience Publishers, New York-London · Zbl 0059.08402
[24] Saji, K.: Criteria for \(D_4\) singularities of wave fronts. Tohoku Math. J. (2) 63(1), 137-147 (2011) · Zbl 1233.57017
[25] Saji, K., Teramoto, K.: Behavior of principal curvatures of frontals near non-front singular points and their application. arXiv:2003.07256. · Zbl 1487.57041
[26] Tenenblat, K.; Wang, Q., Ribaucour transformations for hypersurfaces in space forms, Ann. Global Anal. Geom., 29, 2, 157-185 (2006) · Zbl 1101.53034 · doi:10.1007/s10455-005-9010-8
[27] Tenenblat, K.; Wang, Q., New constant mean curvature surfaces in the hyperbolic space, Ill. J. Math., 53, 1, 135-161 (2009) · Zbl 1194.53051
[28] Teramoto, K., Parallel and dual surfaces of cuspidal edges, Differ. Geom. Appl., 44, 52-62 (2016) · Zbl 1339.53003 · doi:10.1016/j.difgeo.2015.10.005
[29] Teramoto, K., Principal curvatures and parallel surfaces of wave fronts, Adv. Geom., 19, 4, 541-554 (2019) · Zbl 1439.57051 · doi:10.1515/advgeom-2018-0038
[30] Umehara, M.; Yamada, K., Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., 35, 1, 13-40 (2006) · Zbl 1109.53016 · doi:10.14492/hokmj/1285766302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.