×

The vectorial Ribaucour transformation for submanifolds and applications. (English) Zbl 1124.53009

By extending the transformation in [Q. P. Liu; M. Manas, J. Phys. A, Math. Gen. 31, No. 10, L193–L200 (1998; Zbl 0922.58088)], a vectorial Ribaucour transformation for Euclidean submanifolds is developed here for orthogonal coordinate systems. A general decomposition theorem gives the conditions under which the composition of two or more vectorial Ribaucour transformations is again a Ribaucour transformation. The main application of this is an explicit local construction of an arbitrary Euclidean \(n\)-dimensional submanifold with flat normal bundle and codimension \(m\), by using a commuting family of \(m\) Hessian matrices on an open subset of the Euclidean space \(\mathbb{R}^n\). More general, a local construction of all Euclidean submanifolds carrying a parallel flat normal bundle is obtained. In this context, see J. Berndt, S. Console and C. Olmos [Submanifolds and holonomy. Boca Raton, FL: Chapman and Hall/CRC (2003; Zbl 1043.53044)].
The authors obtain an explicit construction in terms of the vectorial Ribaucour transformations of all Euclidean submanifolds that carry a Dupin principal curvature normal vector field with integrable conullity, which is a crucial concept in the study of reducibility of Dupin submanifolds [M. Dajczer, L. Florit and R. Tojeiro, Ill. J. Math. 49, 759–791 (2005; Zbl 1090.53024)].

MSC:

53B25 Local submanifolds
58J72 Correspondences and other transformation methods (e.g., Lie-Bäcklund) for PDEs on manifolds

References:

[1] Jürgen Berndt, Sergio Console, and Carlos Olmos, Submanifolds and holonomy, Chapman & Hall/CRC Research Notes in Mathematics, vol. 434, Chapman & Hall/CRC, Boca Raton, FL, 2003. · Zbl 1043.53044
[2] F.E. Burstall and U. Hertrich-Jeromin, The Ribaucour transformation in Lie sphere geometry, Preprint arXiv:math.DG/0407244 v1, 2004. · Zbl 1104.53050
[3] G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910. · JFM 41.0770.14
[4] Marcos Dajczer and Ruy Tojeiro, An extension of the classical Ribaucour transformation, Proc. London Math. Soc. (3) 85 (2002), no. 1, 211 – 232. · Zbl 1028.53057 · doi:10.1112/S0024611502013552
[5] Marcos Dajczer and Ruy Tojeiro, Commuting Codazzi tensors and the Ribaucour transformation for submanifolds, Results Math. 44 (2003), no. 3-4, 258 – 278. · Zbl 1055.53010 · doi:10.1007/BF03322986
[6] Marcos Dajczer, Luis A. Florit, and Ruy Tojeiro, Reducibility of Dupin submanifolds, Illinois J. Math. 49 (2005), no. 3, 759 – 791. · Zbl 1090.53024
[7] I. Bivens, J.-P. Bourguignon, A. Derdziński, D. Ferus, O. Kowalski, T. Klotz Milnor, V. Oliker, U. Simon, W. Strübing, and K. Voss, Discussion on Codazzi-tensors, Global differential geometry and global analysis (Berlin, 1979) Lecture Notes in Math., vol. 838, Springer, Berlin-New York, 1981, pp. 243 – 299.
[8] E. V. Ferapontov, Surfaces with flat normal bundle: an explicit construction, Differential Geom. Appl. 14 (2001), no. 1, 15 – 37. · Zbl 0992.53007 · doi:10.1016/S0926-2245(00)00042-5
[9] E. V. Ferapontov, Hamiltonian systems of hydrodynamic type and their realizations on hypersurfaces of a pseudo-Euclidean space, Problems in geometry, Vol. 22 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990, pp. 59 – 96, 219 (Russian). Translated in J. Soviet Math. 55 (1991), no. 5, 1970 – 1995.
[10] E. V. Ferapontov, Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants, Differential Geom. Appl. 5 (1995), no. 2, 121 – 152. · Zbl 0847.53001 · doi:10.1016/0926-2245(95)00011-R
[11] E. I. Ganzha and S. P. Tsarev, An algebraic superposition formula and the completeness of Bäcklund transformations of (2+1)-dimensional integrable systems, Uspekhi Mat. Nauk 51 (1996), no. 6(312), 197 – 198 (Russian); English transl., Russian Math. Surveys 51 (1996), no. 6, 1200 – 1202. · Zbl 0887.35144 · doi:10.1070/RM1996v051n06ABEH003007
[12] Udo Hertrich-Jeromin, Introduction to Möbius differential geometry, London Mathematical Society Lecture Note Series, vol. 300, Cambridge University Press, Cambridge, 2003. · Zbl 1040.53002
[13] Q. P. Liu and Manuel Mañas, Vectorial Ribaucour transformations for the Lamé equations, J. Phys. A 31 (1998), no. 10, L193 – L200. · Zbl 0922.58088 · doi:10.1088/0305-4470/31/10/003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.