×

Towards top-down holographic composite Higgs: minimal coset from maximal supergravity. (English) Zbl 1522.83379

Summary: Within the context of top-down holography, we study a one-parameter family of regular background solutions of maximal gauged supergravity in seven dimensions, dimensionally reduced on a 2-torus. The dual, four-dimensional confining field theory realises the global (spontaneous as well as explicit) symmetry breaking pattern \(\mathrm{SO}(5)\rightarrow\mathrm{SO}(4)\). We compute the complete mass spectrum for the fluctuations of the 128 bosonic degrees of freedom of the five-dimensional gravity theory, which correspond to scalar, pseudoscalar, vector, axial-vector, and tensor bound states of the dual field theory, and includes particles with exotic SO(4) quantum numbers. We confirm the existence of tachyonic instabilities near the boundaries of the parameter space.
We discuss the interplay between explicit and spontaneous symmetry breaking. The \(\mathrm{SO}(5)/\mathrm{SO}(4)\) coset might provide a first step towards the realisation of a calculable framework and ultraviolet completion of minimal composite Higgs models, if the four pseudo-Nambu-Goldstone bosons are identified with the real components of the Higgs doublet in the standard model (SM), and a subgroup of SO(4) with the \(\mathrm{SU}(2)\times\mathrm{U}(1)\) SM gauge group. We exhibit an example with an additional localised boundary term that mimics the effect of a weakly-coupled external sector.

MSC:

83E50 Supergravity
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E30 String and superstring theories in gravitational theory
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)

References:

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[2] CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[3] D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B136 (1984) 183 [INSPIRE].
[4] H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B145 (1984) 216 [INSPIRE].
[5] M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B254 (1985) 299 [INSPIRE].
[6] G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, vol. 913, Springer (2016), doi:10.1007/978-3-319-22617-0 [arXiv:1506.01961] [INSPIRE]. · Zbl 1326.81006
[7] O. Witzel, Review on Composite Higgs Models, PoSLATTICE2018 (2019) 006 [arXiv:1901.08216] [INSPIRE].
[8] Cacciapaglia, G.; Pica, C.; Sannino, F., Fundamental Composite Dynamics: A Review, Phys. Rept., 877, 1 (2020) · Zbl 1472.81299 · doi:10.1016/j.physrep.2020.07.002
[9] Ferretti, G.; Karateev, D., Fermionic UV completions of Composite Higgs models, JHEP, 03, 077 (2014) · doi:10.1007/JHEP03(2014)077
[10] Ferretti, G., Gauge theories of Partial Compositeness: Scenarios for Run-II of the LHC, JHEP, 06, 107 (2016) · doi:10.1007/JHEP06(2016)107
[11] Cacciapaglia, G.; Ferretti, G.; Flacke, T.; Serôdio, H., Light scalars in composite Higgs models, Front. in Phys., 7, 22 (2019) · doi:10.3389/fphy.2019.00022
[12] R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B671 (2003) 148 [hep-ph/0306259] [INSPIRE]. · Zbl 1058.81583
[13] K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B719 (2005) 165 [hep-ph/0412089] [INSPIRE].
[14] E. Katz, A.E. Nelson and D.G.E. Walker, The Intermediate Higgs, JHEP08 (2005) 074 [hep-ph/0504252] [INSPIRE].
[15] K. Agashe and R. Contino, The Minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B742 (2006) 59 [hep-ph/0510164] [INSPIRE].
[16] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for \(Zb\overline{b} \), Phys. Lett. B641 (2006) 62 [hep-ph/0605341] [INSPIRE].
[17] R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
[18] R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].
[19] Lodone, P., Vector-like quarks in a ‘composite’ Higgs model, JHEP, 12, 029 (2008) · doi:10.1088/1126-6708/2008/12/029
[20] Falkowski, A.; Pérez-Victoria, M., Electroweak Breaking on a Soft Wall, JHEP, 12, 107 (2008) · doi:10.1088/1126-6708/2008/12/107
[21] Gripaios, B.; Pomarol, A.; Riva, F.; Serra, J., Beyond the Minimal Composite Higgs Model, JHEP, 04, 070 (2009) · doi:10.1088/1126-6708/2009/04/070
[22] Mrazek, J.; Pomarol, A.; Rattazzi, R.; Redi, M.; Serra, J.; Wulzer, A., The Other Natural Two Higgs Doublet Model, Nucl. Phys. B, 853, 1 (2011) · Zbl 1229.81330 · doi:10.1016/j.nuclphysb.2011.07.008
[23] Contino, R.; Marzocca, D.; Pappadopulo, D.; Rattazzi, R., On the effect of resonances in composite Higgs phenomenology, JHEP, 10, 081 (2011) · Zbl 1303.81230 · doi:10.1007/JHEP10(2011)081
[24] Marzocca, D.; Serone, M.; Shu, J., General Composite Higgs Models, JHEP, 08, 013 (2012) · doi:10.1007/JHEP08(2012)013
[25] Grojean, C.; Matsedonskyi, O.; Panico, G., Light top partners and precision physics, JHEP, 10, 160 (2013) · doi:10.1007/JHEP10(2013)160
[26] Barnard, J.; Gherghetta, T.; Ray, TS, UV descriptions of composite Higgs models without elementary scalars, JHEP, 02, 002 (2014) · doi:10.1007/JHEP02(2014)002
[27] Cacciapaglia, G.; Sannino, F., Fundamental Composite (Goldstone) Higgs Dynamics, JHEP, 04, 111 (2014) · Zbl 1367.81153 · doi:10.1007/JHEP04(2014)111
[28] Ferretti, G., UV Completions of Partial Compositeness: The Case for a SU(4) Gauge Group, JHEP, 06, 142 (2014) · doi:10.1007/JHEP06(2014)142
[29] A. Arbey, G. Cacciapaglia, H. Cai, A. Deandrea, S. Le Corre and F. Sannino, Fundamental Composite Electroweak Dynamics: Status at the LHC, Phys. Rev. D95 (2017) 015028 [arXiv:1502.04718] [INSPIRE].
[30] Cacciapaglia, G.; Cai, H.; Deandrea, A.; Flacke, T.; Lee, SJ; Parolini, A., Composite scalars at the LHC: the Higgs, the Sextet and the Octet, JHEP, 11, 201 (2015) · Zbl 1388.81961 · doi:10.1007/JHEP11(2015)201
[31] von Gersdorff, G.; Pontón, E.; Rosenfeld, R., The Dynamical Composite Higgs, JHEP, 06, 119 (2015) · doi:10.1007/JHEP06(2015)119
[32] Feruglio, F.; Gavela, B.; Kanshin, K.; Machado, PAN; Rigolin, S.; Saa, S., The minimal linear sigma model for the Goldstone Higgs, JHEP, 06, 038 (2016) · doi:10.1007/JHEP06(2016)038
[33] T. DeGrand, M. Golterman, E.T. Neil and Y. Shamir, One-loop Chiral Perturbation Theory with two fermion representations, Phys. Rev. D94 (2016) 025020 [arXiv:1605.07738] [INSPIRE].
[34] Fichet, S.; von Gersdorff, G.; Pontón, E.; Rosenfeld, R., The Excitation of the Global Symmetry-Breaking Vacuum in Composite Higgs Models, JHEP, 09, 158 (2016) · doi:10.1007/JHEP09(2016)158
[35] J. Galloway, A.L. Kagan and A. Martin, A UV complete partially composite-PNGB Higgs, Phys. Rev. D95 (2017) 035038 [arXiv:1609.05883] [INSPIRE].
[36] A. Agugliaro, O. Antipin, D. Becciolini, S. De Curtis and M. Redi, UV complete composite Higgs models, Phys. Rev. D95 (2017) 035019 [arXiv:1609.07122] [INSPIRE].
[37] A. Belyaev et al., Di-boson signatures as Standard Candles for Partial Compositeness, JHEP01 (2017) 094 [Erratum ibid.12 (2017) 088] [arXiv:1610.06591] [INSPIRE]. · Zbl 1373.81347
[38] N. Bizot, M. Frigerio, M. Knecht and J.-L. Kneur, Nonperturbative analysis of the spectrum of meson resonances in an ultraviolet-complete composite-Higgs model, Phys. Rev. D95 (2017) 075006 [arXiv:1610.09293] [INSPIRE].
[39] C. Csáki, T. Ma and J. Shu, Maximally Symmetric Composite Higgs Models, Phys. Rev. Lett.119 (2017) 131803 [arXiv:1702.00405] [INSPIRE].
[40] Chala, M.; Durieux, G.; Grojean, C.; de Lima, L.; Matsedonskyi, O., Minimally extended SILH, JHEP, 06, 088 (2017) · Zbl 1380.81391 · doi:10.1007/JHEP06(2017)088
[41] M. Golterman and Y. Shamir, Effective potential in ultraviolet completions for composite Higgs models, Phys. Rev. D97 (2018) 095005 [arXiv:1707.06033] [INSPIRE].
[42] C. Csáki, T. Ma and J. Shu, Trigonometric Parity for Composite Higgs Models, Phys. Rev. Lett.121 (2018) 231801 [arXiv:1709.08636] [INSPIRE].
[43] T. Alanne, D. Buarque Franzosi and M.T. Frandsen, A partially composite Goldstone Higgs, Phys. Rev. D96 (2017) 095012 [arXiv:1709.10473] [INSPIRE].
[44] T. Alanne, D. Buarque Franzosi, M.T. Frandsen, M.L.A. Kristensen, A. Meroni and M. Rosenlyst, Partially composite Higgs models: Phenomenology and RG analysis, JHEP01 (2018) 051 [arXiv:1711.10410] [INSPIRE]. · Zbl 1384.81129
[45] F. Sannino, P. Stangl, D.M. Straub and A.E. Thomsen, Flavor Physics and Flavor Anomalies in Minimal Fundamental Partial Compositeness, Phys. Rev. D97 (2018) 115046 [arXiv:1712.07646] [INSPIRE].
[46] T. Alanne, N. Bizot, G. Cacciapaglia and F. Sannino, Classification of NLO operators for composite Higgs models, Phys. Rev. D97 (2018) 075028 [arXiv:1801.05444] [INSPIRE].
[47] Bizot, N.; Cacciapaglia, G.; Flacke, T., Common exotic decays of top partners, JHEP, 06, 065 (2018) · doi:10.1007/JHEP06(2018)065
[48] Cai, C.; Cacciapaglia, G.; Zhang, H-H, Vacuum alignment in a composite 2HDM, JHEP, 01, 130 (2019) · doi:10.1007/JHEP01(2019)130
[49] Agugliaro, A.; Cacciapaglia, G.; Deandrea, A.; De Curtis, S., Vacuum misalignment and pattern of scalar masses in the SU(5)/SO(5) composite Higgs model, JHEP, 02, 089 (2019) · doi:10.1007/JHEP02(2019)089
[50] Cacciapaglia, G.; Ma, T.; Vatani, S.; Wu, Y., Towards a fundamental safe theory of composite Higgs and Dark Matter, Eur. Phys. J. C, 80, 1088 (2020) · doi:10.1140/epjc/s10052-020-08648-7
[51] Gertov, H.; Nelson, AE; Perko, A.; Walker, DGE, Lattice-Friendly Gauge Completion of a Composite Higgs with Top Partners, JHEP, 02, 181 (2019) · doi:10.1007/JHEP02(2019)181
[52] V. Ayyar et al., Radiative Contribution to the Composite-Higgs Potential in a Two-Representation Lattice Model, Phys. Rev. D99 (2019) 094504 [arXiv:1903.02535] [INSPIRE].
[53] Cacciapaglia, G.; Cai, H.; Deandrea, A.; Kushwaha, A., Composite Higgs and Dark Matter Model in SU(6)/SO(6), JHEP, 10, 035 (2019) · Zbl 1427.85004 · doi:10.1007/JHEP10(2019)035
[54] D. Buarque Franzosi and G. Ferretti, Anomalous dimensions of potential top-partners, SciPost Phys.7 (2019) 027 [arXiv:1905.08273] [INSPIRE].
[55] G. Cacciapaglia, S. Vatani and C. Zhang, Composite Higgs Meets Planck Scale: Partial Compositeness from Partial Unification, Phys. Lett. B815 (2021) 136177 [arXiv:1911.05454] [INSPIRE]. · Zbl 1509.83009
[56] Cacciapaglia, G.; Deandrea, A.; Flacke, T.; Iyer, AM, Gluon-Photon Signatures for color octet at the LHC (and beyond), JHEP, 05, 027 (2020) · doi:10.1007/JHEP05(2020)027
[57] Hietanen, A.; Lewis, R.; Pica, C.; Sannino, F., Fundamental Composite Higgs Dynamics on the Lattice: SU(2) with Two Flavors, JHEP, 07, 116 (2014) · doi:10.1007/JHEP07(2014)116
[58] W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei. II. Nuclear spectroscopy in two-color QCD, Phys. Rev. D90 (2014) 114506 [arXiv:1406.4116] [INSPIRE].
[59] R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica and F. Sannino, SU(2) gauge theory with two fundamental flavors: A minimal template for model building, Phys. Rev. D94 (2016) 094507 [arXiv:1602.06559] [INSPIRE].
[60] R. Arthur, V. Drach, A. Hietanen, C. Pica and F. Sannino, SU(2) Gauge Theory with Two Fundamental Flavours: Scalar and Pseudoscalar Spectrum, arXiv:1607.06654 [INSPIRE].
[61] Pica, C.; Drach, V.; Hansen, M.; Sannino, F., Composite Higgs Dynamics on the Lattice, EPJ Web Conf., 137, 10005 (2017) · doi:10.1051/epjconf/201713710005
[62] Lee, J-W; Lucini, B.; Piai, M., Symmetry restoration at high-temperature in two-color and two-flavor lattice gauge theories, JHEP, 04, 036 (2017) · Zbl 1378.81087 · doi:10.1007/JHEP04(2017)036
[63] Drach, V.; Janowski, T.; Pica, C., Update on SU(2) gauge theory with NF = 2 fundamental flavours, EPJ Web Conf., 175, 08020 (2018) · doi:10.1051/epjconf/201817508020
[64] Drach, V.; Janowski, T.; Pica, C.; Prelovsek, S., Scattering of Goldstone Bosons and resonance production in a Composite Higgs model on the lattice, JHEP, 04, 117 (2021) · doi:10.1007/JHEP04(2021)117
[65] Bennett, E., Sp(4) gauge theory on the lattice: towards SU(4)/Sp(4) composite Higgs (and beyond), JHEP, 03, 185 (2018) · Zbl 1388.81281 · doi:10.1007/JHEP03(2018)185
[66] Bennett, E., Sp(4) gauge theories on the lattice: N_f = 2 dynamical fundamental fermions, JHEP, 12, 053 (2019) · doi:10.1007/JHEP12(2019)053
[67] E. Bennett et al., Sp(4) gauge theories on the lattice: quenched fundamental and antisymmetric fermions, Phys. Rev. D101 (2020) 074516 [arXiv:1912.06505] [INSPIRE].
[68] V. Ayyar et al., Spectroscopy of SU(4) composite Higgs theory with two distinct fermion representations, Phys. Rev. D97 (2018) 074505 [arXiv:1710.00806] [INSPIRE].
[69] V. Ayyar et al., Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations, Phys. Rev. D97 (2018) 114505 [arXiv:1801.05809] [INSPIRE].
[70] V. Ayyar et al., Finite-temperature phase structure of SU(4) gauge theory with multiple fermion representations, Phys. Rev. D97 (2018) 114502 [arXiv:1802.09644] [INSPIRE].
[71] V. Ayyar et al., Partial compositeness and baryon matrix elements on the lattice, Phys. Rev. D99 (2019) 094502 [arXiv:1812.02727] [INSPIRE].
[72] Cossu, G.; Del Debbio, L.; Panero, M.; Preti, D., Strong dynamics with matter in multiple representations: SU(4) gauge theory with fundamental and sextet fermions, Eur. Phys. J. C, 79, 638 (2019) · doi:10.1140/epjc/s10052-019-7137-1
[73] T. Appelquist, J. Ingoldby and M. Piai, Nearly Conformal Composite Higgs Model, Phys. Rev. Lett.126 (2021) 191804 [arXiv:2012.09698] [INSPIRE].
[74] Vecchi, L., A dangerous irrelevant UV-completion of the composite Higgs, JHEP, 02, 094 (2017) · Zbl 1377.81241 · doi:10.1007/JHEP02(2017)094
[75] Ma, T.; Cacciapaglia, G., Fundamental Composite 2HDM: SU(N) with 4 flavours, JHEP, 03, 211 (2016) · doi:10.1007/JHEP03(2016)211
[76] Buarque Franzosi, D.; Cacciapaglia, G.; Deandrea, A., Sigma-assisted low scale composite Goldstone-Higgs, Eur. Phys. J. C, 80, 28 (2020) · doi:10.1140/epjc/s10052-019-7572-z
[77] LatKMI collaboration, Light composite scalar in eight-flavor QCD on the lattice, Phys. Rev. D89 (2014) 111502 [arXiv:1403.5000] [INSPIRE].
[78] T. Appelquist et al., Strongly interacting dynamics and the search for new physics at the LHC, Phys. Rev. D93 (2016) 114514 [arXiv:1601.04027] [INSPIRE].
[79] LatKMI collaboration, Light flavor-singlet scalars and walking signals in N_f = 8 QCD on the lattice, Phys. Rev. D96 (2017) 014508 [arXiv:1610.07011] [INSPIRE].
[80] A.D. Gasbarro and G.T. Fleming, Examining the Low Energy Dynamics of Walking Gauge Theory, PoSLATTICE2016 (2017) 242 [arXiv:1702.00480] [INSPIRE].
[81] Lattice Strong Dynamics collaboration, Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors, Phys. Rev. D99 (2019) 014509 [arXiv:1807.08411] [INSPIRE].
[82] S. Matsuzaki and K. Yamawaki, Dilaton Chiral Perturbation Theory: Determining the Mass and Decay Constant of the Technidilaton on the Lattice, Phys. Rev. Lett.113 (2014) 082002 [arXiv:1311.3784] [INSPIRE].
[83] M. Golterman and Y. Shamir, Low-energy effective action for pions and a dilatonic meson, Phys. Rev. D94 (2016) 054502 [arXiv:1603.04575] [INSPIRE].
[84] A. Kasai, K.-i. Okumura and H. Suzuki, A dilaton-pion mass relation, arXiv:1609.02264 [INSPIRE].
[85] M. Hansen, K. Langæble and F. Sannino, Extending Chiral Perturbation Theory with an Isosinglet Scalar, Phys. Rev. D95 (2017) 036005 [arXiv:1610.02904] [INSPIRE].
[86] M. Golterman and Y. Shamir, Effective pion mass term and the trace anomaly, Phys. Rev. D95 (2017) 016003 [arXiv:1611.04275] [INSPIRE].
[87] Appelquist, T.; Ingoldby, J.; Piai, M., Dilaton EFT Framework For Lattice Data, JHEP, 07, 035 (2017) · Zbl 1380.81251 · doi:10.1007/JHEP07(2017)035
[88] Appelquist, T.; Ingoldby, J.; Piai, M., Analysis of a Dilaton EFT for Lattice Data, JHEP, 03, 039 (2018) · Zbl 1387.81277 · doi:10.1007/JHEP03(2018)039
[89] M. Golterman and Y. Shamir, Large-mass regime of the dilaton-pion low-energy effective theory, Phys. Rev. D98 (2018) 056025 [arXiv:1805.00198] [INSPIRE].
[90] O. Catà and C. Müller, Chiral effective theories with a light scalar at one loop, Nucl. Phys. B952 (2020) 114938 [arXiv:1906.01879] [INSPIRE]. · Zbl 1473.81087
[91] T. Appelquist, J. Ingoldby and M. Piai, Dilaton potential and lattice data, Phys. Rev. D101 (2020) 075025 [arXiv:1908.00895] [INSPIRE]. · Zbl 1380.81251
[92] M. Golterman, E.T. Neil and Y. Shamir, Application of dilaton chiral perturbation theory to N_f = 8, SU(3) spectral data, Phys. Rev. D102 (2020) 034515 [arXiv:2003.00114] [INSPIRE].
[93] A.A. Migdal and M.A. Shifman, Dilaton Effective Lagrangian in Gluodynamics, Phys. Lett. B114 (1982) 445 [INSPIRE].
[94] S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press, Cambridge, U.K. (1985), doi:10.1017/CBO9780511565045 [INSPIRE]. · Zbl 0575.22023
[95] C.N. Leung, S.T. Love and W.A. Bardeen, Spontaneous Symmetry Breaking in Scale Invariant Quantum Electrodynamics, Nucl. Phys. B273 (1986) 649 [INSPIRE].
[96] W.A. Bardeen, C.N. Leung and S.T. Love, The Dilaton and Chiral Symmetry Breaking, Phys. Rev. Lett.56 (1986) 1230 [INSPIRE].
[97] K. Yamawaki, M. Bando and K.-i. Matumoto, Scale Invariant Technicolor Model and a Technidilaton, Phys. Rev. Lett.56 (1986) 1335 [INSPIRE].
[98] W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett.100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].
[99] D.K. Hong, S.D.H. Hsu and F. Sannino, Composite Higgs from higher representations, Phys. Lett. B597 (2004) 89 [hep-ph/0406200] [INSPIRE].
[100] D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for CERN LHC, Phys. Rev. D72 (2005) 055001 [hep-ph/0505059] [INSPIRE].
[101] M. Hashimoto and K. Yamawaki, Techni-dilaton at Conformal Edge, Phys. Rev. D83 (2011) 015008 [arXiv:1009.5482] [INSPIRE].
[102] T. Appelquist and Y. Bai, A Light Dilaton in Walking Gauge Theories, Phys. Rev. D82 (2010) 071701 [arXiv:1006.4375] [INSPIRE].
[103] L. Vecchi, Phenomenology of a light scalar: the dilaton, Phys. Rev. D82 (2010) 076009 [arXiv:1002.1721] [INSPIRE].
[104] Elander, D.; Piai, M., The decay constant of the holographic techni-dilaton and the 125 GeV boson, Nucl. Phys. B, 867, 779 (2013) · Zbl 1262.81231 · doi:10.1016/j.nuclphysb.2012.10.019
[105] Z. Chacko and R.K. Mishra, Effective Theory of a Light Dilaton, Phys. Rev. D87 (2013) 115006 [arXiv:1209.3022] [INSPIRE].
[106] Bellazzini, B.; Csáki, C.; Hubisz, J.; Serra, J.; Terning, J., A Higgslike Dilaton, Eur. Phys. J. C, 73, 2333 (2013) · doi:10.1140/epjc/s10052-013-2333-x
[107] T. Abe, R. Kitano, Y. Konishi, K.-y. Oda, J. Sato and S. Sugiyama, Minimal Dilaton Model, Phys. Rev. D86 (2012) 115016 [arXiv:1209.4544] [INSPIRE].
[108] E. Eichten, K. Lane and A. Martin, A Higgs Impostor in Low-Scale Technicolor, arXiv:1210.5462 [INSPIRE].
[109] Bellazzini, B.; Csáki, C.; Hubisz, J.; Serra, J.; Terning, J., A Naturally Light Dilaton and a Small Cosmological Constant, Eur. Phys. J. C, 74, 2790 (2014) · doi:10.1140/epjc/s10052-014-2790-x
[110] P. Hernández-Leon and L. Merlo, Distinguishing A Higgs-Like Dilaton Scenario With A Complete Bosonic Effective Field Theory Basis, Phys. Rev. D96 (2017) 075008 [arXiv:1703.02064] [INSPIRE].
[111] Caracciolo, F.; Parolini, A.; Serone, M., UV Completions of Composite Higgs Models with Partial Compositeness, JHEP, 02, 066 (2013) · doi:10.1007/JHEP02(2013)066
[112] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[113] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[114] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[115] Aharony, O.; Gubser, SS; Maldacena, JM; Ooguri, H.; Oz, Y., Large N field theories, string theory and gravity, Phys. Rept., 323, 183 (2000) · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[116] Bianchi, M.; Freedman, DZ; Skenderis, K., Holographic renormalization, Nucl. Phys. B, 631, 159 (2002) · Zbl 0995.81075 · doi:10.1016/S0550-3213(02)00179-7
[117] Skenderis, K., Lecture notes on holographic renormalization, Class. Quant. Grav., 19, 5849 (2002) · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
[118] Papadimitriou, I.; Skenderis, K., AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys., 8, 73 (2005) · Zbl 1081.81085
[119] Rey, S-J; Yee, J-T, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C, 22, 379 (2001) · Zbl 1072.81555 · doi:10.1007/s100520100799
[120] Maldacena, JM, Wilson loops in large N field theories, Phys. Rev. Lett., 80, 4859 (1998) · Zbl 0947.81128 · doi:10.1103/PhysRevLett.80.4859
[121] Kinar, Y.; Schreiber, E.; Sonnenschein, J., \( Q\overline{Q}\) potential from strings in curved space-time: Classical results, Nucl. Phys. B, 566, 103 (2000) · Zbl 1028.81516 · doi:10.1016/S0550-3213(99)00652-5
[122] Brandhuber, A.; Sfetsos, K., Wilson loops from multicenter and rotating branes, mass gaps and phase structure in gauge theories, Adv. Theor. Math. Phys., 3, 851 (1999) · Zbl 0989.81089 · doi:10.4310/ATMP.1999.v3.n4.a4
[123] Avramis, SD; Sfetsos, K.; Siampos, K., Stability of strings dual to flux tubes between static quarks in N = 4 SYM, Nucl. Phys. B, 769, 44 (2007) · Zbl 1117.81346 · doi:10.1016/j.nuclphysb.2007.01.026
[124] C. Núñez, M. Piai and A. Rago, Wilson Loops in string duals of Walking and Flavored Systems, Phys. Rev. D81 (2010) 086001 [arXiv:0909.0748] [INSPIRE].
[125] Faedo, AF; Piai, M.; Schofield, D., On the stability of multiscale models of dynamical symmetry breaking from holography, Nucl. Phys. B, 880, 504 (2014) · Zbl 1284.83160 · doi:10.1016/j.nuclphysb.2014.01.016
[126] Witten, E., Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys., 2, 505 (1998) · Zbl 1057.81550 · doi:10.4310/ATMP.1998.v2.n3.a3
[127] Sakai, T.; Sugimoto, S., Low energy hadron physics in holographic QCD, Prog. Theor. Phys., 113, 843 (2005) · Zbl 1076.81623 · doi:10.1143/PTP.113.843
[128] Sakai, T.; Sugimoto, S., More on a holographic dual of QCD, Prog. Theor. Phys., 114, 1083 (2005) · Zbl 1082.81522 · doi:10.1143/PTP.114.1083
[129] Karch, A.; Katz, E., Adding flavor to AdS/CFT, JHEP, 06, 043 (2002) · Zbl 1035.81548 · doi:10.1088/1126-6708/2002/06/043
[130] Kruczenski, M.; Mateos, D.; Myers, RC; Winters, DJ, Meson spectroscopy in AdS/CFT with flavor, JHEP, 07, 049 (2003) · doi:10.1088/1126-6708/2003/07/049
[131] Erdmenger, J.; Evans, N.; Kirsch, I.; Threlfall, E., Mesons in Gauge/Gravity Duals — A Review, Eur. Phys. J. A, 35, 81 (2008) · doi:10.1140/epja/i2007-10540-1
[132] J. Erdmenger, N. Evans, W. Porod and K.S. Rigatos, Gauge/gravity dynamics for composite Higgs models and the top mass, Phys. Rev. Lett.126 (2021) 071602 [arXiv:2009.10737] [INSPIRE].
[133] Erdmenger, J.; Evans, N.; Porod, W.; Rigatos, KS, Gauge/gravity dual dynamics for the strongly coupled sector of composite Higgs models, JHEP, 02, 058 (2021) · doi:10.1007/JHEP02(2021)058
[134] D. Elander, M. Frigerio, M. Knecht and J.-L. Kneur, Holographic models of composite Higgs in the Veneziano limit. Part I. Bosonic sector, JHEP03 (2021) 182 [arXiv:2011.03003] [INSPIRE].
[135] K. Pilch, P. van Nieuwenhuizen and P.K. Townsend, Compactification of d = 11 Supergravity on S_4(Or 11 = 7 + 4, Too), Nucl. Phys. B242 (1984) 377 [INSPIRE].
[136] Nastase, H.; Vaman, D.; van Nieuwenhuizen, P., Consistent nonlinear K K reduction of 11 − D supergravity on AdS_7 × S^4and selfduality in odd dimensions, Phys. Lett. B, 469, 96 (1999) · Zbl 0987.81570 · doi:10.1016/S0370-2693(99)01266-6
[137] M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged Maximally Extended Supergravity in Seven-dimensions, Phys. Lett. B143 (1984) 103 [INSPIRE].
[138] M. Pernici, K. Pilch, P. van Nieuwenhuizen and N.P. Warner, Noncompact Gaugings and Critical Points of Maximal Supergravity in Seven-dimensions, Nucl. Phys. B249 (1985) 381 [INSPIRE].
[139] Cvetič, M., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B, 558, 96 (1999) · Zbl 0951.83033 · doi:10.1016/S0550-3213(99)00419-8
[140] Lü, H.; Pope, CN, Exact embedding of N = 1, D = 7 gauged supergravity in D = 11, Phys. Lett. B, 467, 67 (1999) · Zbl 0994.83062 · doi:10.1016/S0370-2693(99)01170-3
[141] Cvetič, M.; Lü, H.; Pope, CN; Sadrzadeh, A.; Tran, TA, S^3and S^4reductions of type IIA supergravity, Nucl. Phys. B, 590, 233 (2000) · Zbl 1006.83072 · doi:10.1016/S0550-3213(00)00466-1
[142] Campos, VL; Ferretti, G.; Larsson, H.; Martelli, D.; Nilsson, BEW, A Study of holographic renormalization group flows in D = 6 and D = 3, JHEP, 06, 023 (2000) · Zbl 0989.81534 · doi:10.1088/1126-6708/2000/06/023
[143] Samtleben, H.; Weidner, M., The Maximal D = 7 supergravities, Nucl. Phys. B, 725, 383 (2005) · Zbl 1178.83063 · doi:10.1016/j.nuclphysb.2005.07.028
[144] Ganor, OJ, Six-dimensional tensionless strings in the large N limit, Nucl. Phys. B, 489, 95 (1997) · Zbl 0925.81245 · doi:10.1016/S0550-3213(96)00702-X
[145] Witten, E., Five-brane effective action in M-theory, J. Geom. Phys., 22, 103 (1997) · Zbl 0878.58063 · doi:10.1016/S0393-0440(97)80160-X
[146] Seiberg, N., Notes on theories with 16 supercharges, Nucl. Phys. B Proc. Suppl., 67, 158 (1998) · Zbl 0985.81761 · doi:10.1016/S0920-5632(98)00128-5
[147] Aharony, O.; Berkooz, M.; Seiberg, N., Light cone description of (2, 0) superconformal theories in six-dimensions, Adv. Theor. Math. Phys., 2, 119 (1998) · Zbl 0908.53046 · doi:10.4310/ATMP.1998.v2.n1.a5
[148] Harvey, JA; Minasian, R.; Moore, GW, NonAbelian tensor multiplet anomalies, JHEP, 09, 004 (1998) · Zbl 0953.81093 · doi:10.1088/1126-6708/1998/09/004
[149] R. Corrado, B. Florea and R. McNees, Correlation functions of operators and Wilson surfaces in the d = 6, (0, 2) theory in the large N limit, Phys. Rev. D60 (1999) 085011 [hep-th/9902153] [INSPIRE].
[150] Intriligator, KA, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2, 0) field theories, Nucl. Phys. B, 581, 257 (2000) · Zbl 0984.81145 · doi:10.1016/S0550-3213(00)00148-6
[151] Cordova, C.; Dumitrescu, TT; Yin, X., Higher derivative terms, toroidal compactification, and Weyl anomalies in six-dimensional (2, 0) theories, JHEP, 10, 128 (2019) · Zbl 1427.81121 · doi:10.1007/JHEP10(2019)128
[152] Elander, D.; Faedo, AF; Hoyos, C.; Mateos, D.; Piai, M., Multiscale confining dynamics from holographic RG flows, JHEP, 05, 003 (2014) · doi:10.1007/JHEP05(2014)003
[153] D. Elander, M. Piai and J. Roughley, Probing the holographic dilaton, JHEP06 (2020) 177 [Erratum ibid.12 (2020) 109] [arXiv:2004.05656] [INSPIRE]. · Zbl 1437.83111
[154] D. Elander, M. Piai and J. Roughley, Light dilaton in a metastable vacuum, Phys. Rev. D103 (2021) 046009 [arXiv:2011.07049] [INSPIRE]. · Zbl 1437.83111
[155] J. Roughley, Non-perturbative aspects of gauge theories from gauge-gravity dualities, Ph.D. Thesis, Swansea University, Swansea U.K. (2021) [arXiv:2109.11949] [INSPIRE].
[156] Noronha, JL; Rocha, D.; Guimaraes, MS; Wotzasek, C., On the dimensional dependence of duality groups for massive p forms, Phys. Lett. B, 564, 163 (2003) · Zbl 1034.81535 · doi:10.1016/S0370-2693(03)00708-1
[157] H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant. Grav.25 (2008) 214002 [arXiv:0808.4076] [INSPIRE]. · Zbl 1152.83306
[158] Bianchi, M.; Prisco, M.; Mueck, W., New results on holographic three point functions, JHEP, 11, 052 (2003) · doi:10.1088/1126-6708/2003/11/052
[159] Berg, M.; Haack, M.; Mueck, W., Bulk dynamics in confining gauge theories, Nucl. Phys. B, 736, 82 (2006) · Zbl 1109.81352 · doi:10.1016/j.nuclphysb.2005.11.029
[160] M. Berg, M. Haack and W. Mueck, Glueballs vs. Gluinoballs: Fluctuation Spectra in Non-AdS/Non-CFT, Nucl. Phys. B789 (2008) 1 [hep-th/0612224] [INSPIRE]. · Zbl 1151.81387
[161] Elander, D., Glueball Spectra of SQCD-like Theories, JHEP, 03, 114 (2010) · Zbl 1271.81173 · doi:10.1007/JHEP03(2010)114
[162] Elander, D.; Piai, M., Light scalars from a compact fifth dimension, JHEP, 01, 026 (2011) · Zbl 1214.83027 · doi:10.1007/JHEP01(2011)026
[163] Brower, RC; Mathur, SD; Tan, C-I, Glueball spectrum for QCD from AdS supergravity duality, Nucl. Phys. B, 587, 249 (2000) · Zbl 1043.81743 · doi:10.1016/S0550-3213(00)00435-1
[164] Elander, D.; Piai, M.; Roughley, J., Holographic glueballs from the circle reduction of Romans supergravity, JHEP, 02, 101 (2019) · Zbl 1411.83131 · doi:10.1007/JHEP02(2019)101
[165] L.J. Romans, The F(4) Gauged Supergravity in Six-dimensions, Nucl. Phys. B269 (1986) 691 [INSPIRE].
[166] L.J. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B169 (1986) 374 [INSPIRE].
[167] Brandhuber, A.; Oz, Y., The D-4-D-8 brane system and five-dimensional fixed points, Phys. Lett. B, 460, 307 (1999) · Zbl 0987.81590 · doi:10.1016/S0370-2693(99)00763-7
[168] Cvetič, M.; Lü, H.; Pope, CN, Gauged six-dimensional supergravity from massive type IIA, Phys. Rev. Lett., 83, 5226 (1999) · Zbl 0949.83067 · doi:10.1103/PhysRevLett.83.5226
[169] Hong, J.; Liu, JT; Mayerson, DR, Gauged Six-Dimensional Supergravity from Warped IIB Reductions, JHEP, 09, 140 (2018) · Zbl 1398.83124 · doi:10.1007/JHEP09(2018)140
[170] Jeong, J.; Kelekci, O.; Colgain, EO, An alternative IIB embedding of F(4) gauged supergravity, JHEP, 05, 079 (2013) · Zbl 1342.83484 · doi:10.1007/JHEP05(2013)079
[171] D’Auria, R.; Ferrara, S.; Vaula, S., Matter coupled F(4) supergravity and the AdS_6/CFT_5correspondence, JHEP, 10, 013 (2000) · Zbl 0959.83059 · doi:10.1088/1126-6708/2000/10/013
[172] Andrianopoli, L.; D’Auria, R.; Vaula, S., Matter coupled F(4) gauged supergravity Lagrangian, JHEP, 05, 065 (2001) · doi:10.1088/1126-6708/2001/05/065
[173] Nishimura, M., Conformal supergravity from the AdS/CFT correspondence, Nucl. Phys. B, 588, 471 (2000) · Zbl 1009.83060 · doi:10.1016/S0550-3213(00)00472-7
[174] Ferrara, S.; Kehagias, A.; Partouche, H.; Zaffaroni, A., AdS_6interpretation of 5 − D superconformal field theories, Phys. Lett. B, 431, 57 (1998) · doi:10.1016/S0370-2693(98)00560-7
[175] U. Gürsoy, C. Núñez and M. Schvellinger, RG flows from spin(7), CY 4 fold and HK manifolds to AdS, Penrose limits and pp waves, JHEP06 (2002) 015 [hep-th/0203124] [INSPIRE].
[176] Núñez, C.; Park, IY; Schvellinger, M.; Tran, TA, Supergravity duals of gauge theories from F(4) gauged supergravity in six-dimensions, JHEP, 04, 025 (2001) · doi:10.1088/1126-6708/2001/04/025
[177] P. Karndumri, Holographic RG flows in six dimensional F(4) gauged supergravity, JHEP01 (2013) 134 [Erratum ibid.06 (2015) 165] [arXiv:1210.8064] [INSPIRE].
[178] Y. Lozano, E. Ó Colgáin, D. Rodríguez-Gómez and K. Sfetsos, Supersymmetric AdS_6via T Duality, Phys. Rev. Lett.110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].
[179] P. Karndumri, Gravity duals of 5D N = 2 SYM theory from F(4) gauged supergravity, Phys. Rev. D90 (2014) 086009 [arXiv:1403.1150] [INSPIRE].
[180] Chang, C-M; Fluder, M.; Lin, Y-H; Wang, Y., Romans Supergravity from Five-Dimensional Holograms, JHEP, 05, 039 (2018) · Zbl 1391.83125 · doi:10.1007/JHEP05(2018)039
[181] Gutperle, M.; Kaidi, J.; Raj, H., Mass deformations of 5d SCFTs via holography, JHEP, 02, 165 (2018) · Zbl 1387.81318 · doi:10.1007/JHEP02(2018)165
[182] Suh, M., Supersymmetric AdS_6black holes from F(4) gauged supergravity, JHEP, 01, 035 (2019) · Zbl 1409.83214 · doi:10.1007/JHEP01(2019)035
[183] Suh, M., Supersymmetric AdS_6black holes from matter coupled F(4) gauged supergravity, JHEP, 02, 108 (2019) · Zbl 1411.83139 · doi:10.1007/JHEP02(2019)108
[184] N. Kim and M. Shim, Wrapped Brane Solutions in Romans F(4) Gauged Supergravity, Nucl. Phys. B951 (2020) 114882 [arXiv:1909.01534] [INSPIRE]. · Zbl 1472.83105
[185] K. Chen and M. Gutperle, Holographic line defects in F(4) gauged supergravity, Phys. Rev. D100 (2019) 126015 [arXiv:1909.11127] [INSPIRE].
[186] C. Hoyos, N. Jokela and D. Logares, Scattering length in holographic confining theories, Phys. Rev. D102 (2020) 086006 [arXiv:2005.06904] [INSPIRE].
[187] Wen, C-K; Yang, H-X, QC D_4glueball masses from AdS_6black hole description, Mod. Phys. Lett. A, 20, 997 (2005) · Zbl 1079.83533 · doi:10.1142/S0217732305016245
[188] Kuperstein, S.; Sonnenschein, J., Non-critical, near extremal AdS_6background as a holographic laboratory of four dimensional YM theory, JHEP, 11, 026 (2004) · doi:10.1088/1126-6708/2004/11/026
[189] Legramandi, A.; Núñez, C., Holographic description of SCFT_5compactifications, JHEP, 02, 010 (2022) · Zbl 1522.83393 · doi:10.1007/JHEP02(2022)010
[190] Cowdall, PM, On gauged maximal supergravity in six-dimensions, JHEP, 06, 018 (1999) · Zbl 0951.83057 · doi:10.1088/1126-6708/1999/06/018
[191] N. Yamatsu, Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building, arXiv:1511.08771 [INSPIRE]. · Zbl 07406614
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.