×

Minimal \(D = 7\) supergravity and the supersymmetry of Arnold-Beltrami flux branes. (English) Zbl 1388.83799

Summary: We study some properties of the newly found Arnold-Beltrami flux-brane solutions to the minimal \(D=7\) supergravity. To this end we first single out the appropriate Free Differential Algebra containing both a gauge 3-form \({\mathbf B}^{[3]}\) and a gauge 2-form \({\mathbf B}^{[2]}\): then we present the complete rheonomic parametrization of all the generalized curvatures. This allows us to identify two-brane configurations with Arnold-Beltrami fluxes in the transverse space with exact solutions of supergravity and to analyze the Killing spinor equation in their background. We find that there is no preserved supersymmetry if there are no additional translational Killing vectors. Guided by this principle we explicitly construct Arnold-Beltrami flux two-branes that preserve 0, \(\frac 18\) and \(\frac 14\) of the original supersymmetry. Two-branes without fluxes are instead BPS states and preserve \(\frac 12\) supersymmetry. For each two-brane solution we carefully study its discrete symmetry that is always given by some appropriate crystallographic group \(\Gamma\). Such symmetry groups \(\Gamma\) are transmitted to the \(D=3\) gauge theories on the brane world-volume that would occur in the gauge/gravity correspondence. Furthermore we illustrate the intriguing relation between gauge fluxes in two-brane solutions and hyperinstantons in \(D=4\) topological sigma-models.

MSC:

83E50 Supergravity

References:

[1] P.K. Townsend and P. van Nieuwenhuizen, Gauged seven-dimensional supergravity, Phys. Lett.B 125 (1983) 41 [INSPIRE]. · doi:10.1016/0370-2693(83)91230-3
[2] A. Salam and E. Sezgin, SO(4) Gauging of N = 2 Supergravity in Seven-dimensions, Phys. Lett.B 126 (1983) 295 [INSPIRE]. · doi:10.1016/0370-2693(83)90167-3
[3] E. Bergshoeff, I.G. Koh and E. Sezgin, Yang-Mills/Einstein Supergravity in Seven-dimensions, Phys. Rev.D 32 (1985) 1353 [INSPIRE].
[4] E. Beltrami, Opere matematiche4 (1889) 304. · JFM 47.1009.01
[5] V.I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Annales Inst. Fourier16 (1966) 319. · Zbl 0148.45301 · doi:10.5802/aif.233
[6] V.I. Arnold and B.A. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag (1998). · Zbl 0902.76001
[7] M. Hénon, Sur la topologie des lignes de courant dans un cas particulier, Compt. Rend. Hebd. Seances Acad. Sci.A 262 (1966) 312. 262 (1966) 312-314
[8] J. Etnyre, R. Ghrist, Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture, Nonlinearity13 (2000) 441. · Zbl 0982.76021 · doi:10.1088/0951-7715/13/2/306
[9] R. Ghrist, On the contact geometry and topology of ideal fluids, in Handbook of Mathematical Fluid Dynamics. Volume IV, Elsevier(2007), pp. 1-38.
[10] S. Childress, Construction of steady-state hydromagnetic dynamos. I. Spatially periodic fields, report MF-53, Courant Institute of Mathematical Sciences (1967).
[11] S. Childress New solutions of the kinematic dynamo problem, J. Math. Phys.11 (1970) 3063.
[12] T. Dombre, U. Frisch, J.M. Greene, M. Henon, A. Mehr and A.M. Soward, Chaotic streamlines in the ABC flows, J. Fluid Mech.167 (1986) 353. · Zbl 0622.76027 · doi:10.1017/S0022112086002859
[13] O.I. Bogoyavlenskij, Infinite families of exact periodic solutions to the Navier-Stokes equations, Moscow Math. J.3 (2003) 263. · Zbl 1056.76020
[14] O. Bogoyavlenskij and B. Fuchssteiner, Exact NSE solutions with crystallographic symmetries and no transfer of energy through the spectrum, J. Geom. Phys.54 (2005) 324. · Zbl 1159.35394 · doi:10.1016/j.geomphys.2004.10.003
[15] V.I. Arnold, On the evolution of a magnetic feld under the action of transport and diffusion, in Vladimir I. Arnold: Collected Works. Volume II: Hydrodynamics, Bifurcation Theory, and Algebraic Geometry 1965-1972, A.B. Givental, B.A. Khesin, A.N. Varchenko, V.A. Vassiliev and O.Ya. Viro eds., Springer-Verlag Berlin Heidelberg 2014, pp. 405-419 [originally published in Some Problems in Modern Analysis (in Russian) Izd. MGU, Moscow Russia (1984), pp. 8-21].
[16] G.E. Marsh, Force-Free Magnetic Fields: Solutions, Topology and Applications, World Scientific, Singapore (1996).
[17] S. Childress and A.D. Gilbert, Stretch, twist, fold: the fast dynamo, Springer-Verlag (1995). · Zbl 0841.76001
[18] S.E. Jones and A.D. Gilbert, Dynamo action in the ABC flows using symmetries, Geophys. Astrophys. Fluid Dynamics108 (2014) 83. · Zbl 1541.76102 · doi:10.1080/03091929.2013.832762
[19] P. Fré and A.S. Sorin, Classification of Arnold-Beltrami Flows and their Hidden Symmetries, Phys. Part. Nucl.46 (2015) 497 [arXiv:1501.04604] [INSPIRE]. · doi:10.1134/S1063779615040036
[20] P. Fré and A.S. Sorin, 2-branes with Arnold-Beltrami Fluxes from Minimal D = 7 Supergravity, Fortsch. Phys.63 (2015) 411 [arXiv:1504.06802] [INSPIRE]. · Zbl 1338.83176 · doi:10.1002/prop.201500021
[21] P. Fré, P.A. Grassi and A.S. Sorin, Hyperinstantons, the Beltrami Equation and Triholomorphic Maps, Fortsch. Phys.64 (2016) 151 [arXiv:1509.09056] [INSPIRE]. · Zbl 1339.83072 · doi:10.1002/prop.201500061
[22] D. Anselmi and P. Fré, Topological twist in four-dimensions, R-duality and hyperinstantons, Nucl. Phys.B 404 (1993) 288 [hep-th/9211121] [INSPIRE]. · Zbl 1043.81610 · doi:10.1016/0550-3213(93)90481-4
[23] H. Lü, C.N. Pope and K.S. Stelle, Vertical versus diagonal dimensional reduction for p-branes, Nucl. Phys.B 481 (1996) 313 [hep-th/9605082] [INSPIRE]. · Zbl 1049.81604 · doi:10.1016/S0550-3213(96)90137-6
[24] P.M. Cowdall, H. Lü, C.N. Pope, K.S. Stelle and P.K. Townsend, Domain walls in massive supergravities, Nucl. Phys.B 486 (1997) 49 [hep-th/9608173] [INSPIRE]. · Zbl 0925.83106 · doi:10.1016/S0550-3213(96)00609-8
[25] L. Castellani, R. D’Auria and P. Fré eds., Supergravity and String Theory: a geometric perspective, World Scientific (1990).
[26] P. Fré Gravity: a Geometrical Course. Volume One and Two, Springer (2013). · Zbl 1261.83001
[27] F. Cordaro, P. Fré, L. Gualtieri, P. Termonia and M. Trigiante, N = 8 gaugings revisited: An Exhaustive classification, Nucl. Phys.B 532 (1998) 245 [hep-th/9804056] [INSPIRE]. · Zbl 1041.83522 · doi:10.1016/S0550-3213(98)00449-0
[28] B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys.B 655 (2003) 93 [hep-th/0212239] [INSPIRE]. · Zbl 1009.83063 · doi:10.1016/S0550-3213(03)00059-2
[29] P. Fré, Comments on the Six Index Photon in D = 11 Supergravity and the Gauging of Free Differential Algebras, Class. Quant. Grav.1 (1984) L81 [INSPIRE]. · doi:10.1088/0264-9381/1/6/005
[30] C. Chevalley and S. Eilenberg, Cohomology Theory of Lie Groups and Lie Algebras, Transactions of the American Mathematical Society Trans. Am. Math. Soc.63 (1948) 85. · Zbl 0031.24803
[31] R. D’Auria and P. Fré, Geometric Supergravity in D = 11 and Its Hidden Supergroup, Nucl. Phys.B 201 (1982) 101 [Erratum ibid.B 206 (1982) 496] [INSPIRE].
[32] G. Dibitetto, J.J. Fernández-Melgarejo and D. Marqués, All gaugings and stable de Sitter in D = 7 half-maximal supergravity, JHEP11 (2015) 037 [arXiv:1506.01294] [INSPIRE]. · Zbl 1388.83792 · doi:10.1007/JHEP11(2015)037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.