×

Data-driven control of linear systems via quantized feedback. (English) Zbl 1533.93277

Summary: Quantized feedback control is fundamental to system synthesis with limited communication capacity. In sharp contrast to the existing literature on quantized control which requires an explicit dynamical model, the authors study the quadratic stabilization and performance control problems with logarithmically quantized feedback in a direct data-driven framework, where the system state matrix is not exactly known and instead, belongs to an ambiguity set that is directly constructed from a finite number of noisy system data. To this end, the authors firstly establish sufficient and necessary conditions via linear matrix inequalities for the existence of a common quantized controller that achieves our control objectives over the ambiguity set. Then, the authors provide necessary conditions on the data for the solvability of the LMIs, and determine the coarsest quantization density via semi-definite programming. The theoretical results are validated through numerical examples.

MSC:

93C05 Linear systems in control theory
93B52 Feedback control

Software:

CVX
Full Text: DOI

References:

[1] Elia, N.; Mitter, S. K., Stabilization of linear systems with limited information, IEEE Trans, On Automatic Control, 46, 9, 1384-1400, (2001) · Zbl 1059.93521 · doi:10.1109/9.948466
[2] Fu, M.; Xie, L., The sector bound approach to quantized feedback control, IEEE Trans. on Automatic Control, 50, 11, 1698-1711, (2005) · Zbl 1365.81064 · doi:10.1109/TAC.2005.858689
[3] You, K.; Su, W.; Fu, M., Attainability of the minimum data rate for stabilization of linear systems via logarithmic quantization, Automatica, 47, 1, 170-176, (2011) · Zbl 1209.93125 · doi:10.1016/j.automatica.2010.10.024
[4] Kang, X.; Ishii, H., Coarsest quantization for networked control of uncertain linear systems, Automatica, 51, 1-8, (2015) · Zbl 1309.93134 · doi:10.1016/j.automatica.2014.10.113
[5] Zhou, J.; Wen, C.; Wang, W., Adaptive backstepping control of nonlinear uncertain systems with quantized states, IEEE Trans. on Automatic Control, 64, 11, 4756-4763, (2019) · Zbl 1482.93335 · doi:10.1109/TAC.2019.2906931
[6] Kalman R E, Nonlinear aspects of sampled-data control systems, Proc. Symp. Nonlinear Circuit Analysis VI, 1956, 273-313. · Zbl 0081.34901
[7] De Persis, C.; Tesi, P., Formulas for data-driven control: Stabilization, optimality, and robustness, IEEE Trans. on Automatic Control, 65, 3, 909-924, (2019) · Zbl 1533.93591 · doi:10.1109/TAC.2019.2959924
[8] De Persis, C.; Tesi, P., Low-complexity learning of linear quadratic regulators from noisy data, Automatica, 128, 109548, (2021) · Zbl 1461.93485 · doi:10.1016/j.automatica.2021.109548
[9] Van Waarde, H. J.; Eising, J.; Trentelman, H. L., Data informativity: A new perspective on data-driven analysis and control, IEEE Trans. on Automatic Control, 65, 11, 4753-4768, (2020) · Zbl 1536.93167 · doi:10.1109/TAC.2020.2966717
[10] van Waarde, H. J.; Camlibel, M. K.; Mesbahi, M., From noisy data to feedback controllers: Non-conservative design via a matrix S-lemma, IEEE Trans. on Automatic Control, 67, 1, 162-175, (2020) · Zbl 1536.93272 · doi:10.1109/TAC.2020.3047577
[11] Kang, S.; You, K., Minimum input design for direct data-driven property identification of unknown linear systems, Automatica, 156, 111130, (2023) · Zbl 1520.93102 · doi:10.1016/j.automatica.2023.111130
[12] Zhao F, Fu X, and You K, On the sample complexity of stabilizing linear systems via policy gradient methods, 2022, arXiv: 2205.14335.
[13] Werner S W and Peherstorfer B, On the sample complexity of stabilizing linear dynamical systems from data, Foundations of Computational Mathematics, 2023, DOI: doi:10.1007/s10208-023-09605-y. · Zbl 1542.65188
[14] Hu, Y.; Wierman, A.; Qu, G., On the sample complexity of stabilizing lti systems on a single trajectory, Advances in Neural Information Processing Systems, 35, 16989-17002, (2022)
[15] Zhao F, Li X, and You K, Data-driven control of unknown linear systems via quantized feedback, Proceedings of the Learning for Dynamics and Control Conference (PMLR), Philadelphia, 2022, 467-479.
[16] Willems, J. C.; Rapisarda, P.; Markovsky, I., A note on persistency of excitation, Systems & Control Letters, 54, 4, 325-329, (2005) · Zbl 1129.93362 · doi:10.1016/j.sysconle.2004.09.003
[17] Dörfler, F.; Coulson, J.; Markovsky, I., Bridging direct and indirect data-driven control formulations via regularizations and relaxations, IEEE Trans. on Automatic Control, 68, 2, 883-897, (2022) · Zbl 1541.93062 · doi:10.1109/TAC.2022.3148374
[18] Coulson J, Lygeros J, and Dörfler F, Data-enabled predictive control: In the shallows of the DeePC, 18th European Control Conference, Napoli, 2019, 307-312.
[19] Berberich, J.; Köhler, J.; Müller, M. A., Data-driven model predictive control with stability and robustness guarantees, IEEE Trans. on Automatic Control, 66, 4, 1702-1717, (2020) · Zbl 1536.93207 · doi:10.1109/TAC.2020.3000182
[20] Bisoffi, A.; De Persis, C.; Tesi, P., Trade-offs in learning controllers from noisy data, Systems & Control Letters, 154, 104985, (2021) · Zbl 1478.93705 · doi:10.1016/j.sysconle.2021.104985
[21] Guo, M.; De Persis, C.; Tesi, P., Data-driven stabilization of nonlinear polynomial systems with noisy data, IEEE Trans. on Automatic Control, 67, 8, 4210-4217, (2021) · Zbl 1537.93538 · doi:10.1109/TAC.2021.3115436
[22] Xu L, Turan M S, Guo B, et al., A data-driven convex programming approach to worst-case robust tracking controller design, 2021, arXiv: 2102.11918.
[23] Rotulo M, De Persis C, and Tesi P, Online learning of data-driven controllers for unknown switched linear systems, 2021, arXiv: 2105.11523.
[24] Berberich J, Scherer C W, and Allgöwer F, Combining prior knowledge and data for robust controller design, 2020, arXiv: 2009.05253.
[25] Hayakawa, T.; Ishii, H.; Tsumura, K., Adaptive quantized control for linear uncertain discrete-time systems, Automatica, 45, 3, 692-700, (2009) · Zbl 1166.93333 · doi:10.1016/j.automatica.2008.07.005
[26] Gao, H.; Chen, T., A new approach to quantized feedback control systems, Automatica, 44, 2, 534-542, (2008) · Zbl 1283.93131 · doi:10.1016/j.automatica.2007.06.015
[27] Fu, M.; Xie, L., Finite-level quantized feedback control for linear systems, IEEE Trans. on Automatic Control, 54, 5, 1165-1170, (2009) · Zbl 1367.93242 · doi:10.1109/TAC.2009.2017815
[28] Coutinho, D. F.; Fu, M.; de Souza, C. E., Input and output quantized feedback linear systems, IEEE Trans. on Automatic Control, 55, 3, 761-766, (2010) · Zbl 1368.93357 · doi:10.1109/TAC.2010.2040497
[29] Shen, B.; Tan, H.; Wang, Z., Quantized/saturated control for sampled-data systems under noisy sampling intervals: A confluent vandermonde matrix approach, IEEE Trans. on Automatic Control, 62, 9, 4753-4759, (2017) · Zbl 1390.93515 · doi:10.1109/TAC.2017.2685083
[30] Corradini, M. L.; Orlando, G., Robust quantized feedback stabilization of linear systems, Automatica, 44, 9, 2458-2462, (2008) · Zbl 1153.93492 · doi:10.1016/j.automatica.2008.01.027
[31] Liu, T.; Jiang, Z. P.; Hill, D. J., A sector bound approach to feedback control of nonlinear systems with state quantization, Automatica, 48, 1, 145-152, (2012) · Zbl 1244.93066 · doi:10.1016/j.automatica.2011.09.041
[32] Yu, X.; Lin, Y., Adaptive backstepping quantized control for a class of nonlinear systems, IEEE Trans. on Automatic Control, 62, 2, 981-985, (2016) · Zbl 1364.93353 · doi:10.1109/TAC.2016.2570140
[33] Zhou, K.; Doyle, J. C., Essentials of Robust Control, Volume 104, (1998), Hoboken: Prentice Hall Upper Saddle River, Hoboken
[34] Zhou, K.; Doyle, J. C.; Glover, K., Robust and Optimal Control, (1996), London: Springer-Verlag, London · Zbl 0999.49500
[35] Boyd, S.; Vandenberghe, L., Convex Optimization, (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1058.90049 · doi:10.1017/CBO9780511804441
[36] Grant M and Boyd S, CVX: Matlab software for disciplined convex programming, version 2.1, 2014, http://cvxr.com/cvx.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.