×

A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction. (English) Zbl 07515403

Summary: This paper introduces a sharp interface method to simulate fluid-structure interaction (FSI) involving rigid bodies immersed in viscous incompressible fluids. The capabilities of this methodology are benchmarked using a range of test cases and demonstrated using large-scale models of biomedical FSI. The numerical approach developed herein, which we refer to as an immersed Lagrangian-Eulerian (ILE) method, integrates aspects of partitioned and immersed FSI formulations by solving separate momentum equations for the fluid and solid subdomains, as in a partitioned formulation, while also using non-conforming discretizations of the dynamic fluid and structure regions, as in an immersed formulation. A simple Dirichlet-Neumann coupling scheme is used, in which the motion of the immersed solid is driven by fluid traction forces evaluated along the fluid-structure interface, and the motion of the fluid along that interface is constrained to match the solid velocity and thereby satisfy the no-slip condition. To develop a practical numerical method, we adopt a penalty approach that approximately imposes the no-slip condition along the fluid-structure interface. In the coupling strategy, a separate discretization of the fluid-structure interface is tethered to the volumetric solid mesh via stiff spring-like penalty forces. Our fluid-structure coupling scheme relies on an immersed interface method (IIM) for discrete geometries, which enables the accurate determination of both velocities and stresses along complex internal interfaces. Numerical methods for FSI can suffer from instabilities related to the added mass effect, but computational tests indicate that the methodology introduced here remains stable for selected test cases across a broad range of solid-fluid mass density ratios, including extremely small, nearly equal, equal, and large density ratios. Biomedical FSI demonstration cases include results obtained using this method to simulate the dynamics of a bileaflet mechanical heart valve in a pulse duplicator, and to model transport of blood clots in a patient-averaged anatomical model of the inferior vena cava.

MSC:

76Mxx Basic methods in fluid mechanics
76Dxx Incompressible viscous fluids
74Fxx Coupling of solid mechanics with other effects

References:

[1] Takashi, N.; Hughes, T. J., An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Comput. Methods Appl. Mech. Eng., 95, 1, 115-138 (1992) · Zbl 0756.76047
[2] Hu, H. H.; Patankar, N. A.; Zhu, M., Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique, J. Comput. Phys., 169, 2, 427-462 (2001) · Zbl 1047.76571
[3] Ahn, H. T.; Kallinderis, Y., Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes, J. Comput. Phys., 219, 2, 671-696 (2006) · Zbl 1189.74035
[4] Lee, A. H.; Campbell, R. L.; Craven, B. A.; Hambric, S. A., Fluid-structure interaction simulation of vortex-induced vibration of a flexible hydrofoil, J. Vib. Acoust., 139, 4, Article 041001 pp. (2017)
[5] Zahle, F.; Sørensen, N. N.; Johansen, J., Wind turbine rotor-tower interaction using an incompressible overset grid method, Wind Energy, 12, 6, 594-619 (2009)
[6] Nakata, T.; Liu, H., A fluid-structure interaction model of insect flight with flexible wings, J. Comput. Phys., 231, 4, 1822-1847 (2012) · Zbl 1377.76048
[7] Koblitz, A.; Lovett, S.; Nikiforakis, N.; Henshaw, W. D., Direct numerical simulation of particulate flows with an overset grid method, J. Comput. Phys., 343, 414-431 (2017) · Zbl 1380.76082
[8] Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Q., A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: General formulation, J. Comput. Phys., 343, 469-500 (2017) · Zbl 1380.76095
[9] Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W., Deforming composite grids for solving fluid structure problems, J. Comput. Phys., 231, 9, 3518-3547 (2012) · Zbl 1402.74030
[10] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[11] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[12] Hou, G.; Wang, J.; Layton, A., Numerical methods for fluid-structure interaction-a review, Commun. Comput. Phys., 12, 2, 337-377 (2012) · Zbl 1373.76001
[13] Griffith, B. E.; Patankar, N. A., Immersed methods for fluid-structure interaction, Annu. Rev. Fluid Mech., 52, 1, 421-448 (2020) · Zbl 1439.76140
[14] Fadlun, E.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 1, 35-60 (2000) · Zbl 0972.76073
[15] Udaykumar, H.; Mittal, R.; Rampunggoon, P.; Khanna, A., A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. Comput. Phys., 174, 1, 345-380 (2001) · Zbl 1106.76428
[16] Gilmanov, A.; Sotiropoulos, F., A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies, J. Comput. Phys., 207, 2, 457-492 (2005) · Zbl 1213.76135
[17] Xu, S.; Wang, Z. J., An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys., 216, 2, 454-493 (2006) · Zbl 1220.76058
[18] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.; Vargas, A.; Von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys., 227, 10, 4825-4852 (2008) · Zbl 1388.76263
[19] Borazjani, I.; Ge, L.; Sotiropoulos, F., Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies, J. Comput. Phys., 227, 16, 7587-7620 (2008) · Zbl 1213.76129
[20] Barad, M. F.; Colella, P.; Schladow, S. G., An adaptive cut-cell method for environmental fluid mechanics, Int. J. Numer. Methods Fluids, 60, 5, 473-514 (2009) · Zbl 1319.76015
[21] Fai, T. G.; Rycroft, C. H., Lubricated immersed boundary method in two dimensions, J. Comput. Phys., 356, 319-339 (2018) · Zbl 1380.76099
[22] Lai, M.-C.; Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160, 2, 705-719 (2000) · Zbl 0954.76066
[23] Griffith, B. E.; Peskin, C. S., On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys., 208, 1, 75-105 (2005) · Zbl 1115.76386
[24] Roma, A. M.; Peskin, C. S.; Berger, M. J., An adaptive version of the immersed boundary method, J. Comput. Phys., 153, 2, 509-534 (1999) · Zbl 0953.76069
[25] Griffith, B. E.; Hornung, R. D.; McQueen, D. M.; Peskin, C. S., An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys., 223, 1, 10-49 (2007) · Zbl 1163.76041
[26] LeVeque, R. J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 4, 1019-1044 (1994) · Zbl 0811.65083
[27] LeVeque, R. J.; Li, Z., Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18, 3, 709-735 (1997) · Zbl 0879.76061
[28] Li, Z.; Ito, K.; Lai, M.-C., An augmented approach for Stokes equations with a discontinuous viscosity and singular forces, Comput. Fluids, 36, 3, 622-635 (2007) · Zbl 1177.76291
[29] Li, Z.; Lai, M.-C., The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171, 2, 822-842 (2001) · Zbl 1065.76568
[30] Lee, L.; LeVeque, R. J., An immersed interface method for incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 25, 3, 832-856 (2003) · Zbl 1163.65322
[31] Le, D.-V.; Khoo, B. C.; Peraire, J., An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries, J. Comput. Phys., 220, 1, 109-138 (2006) · Zbl 1158.74349
[32] Hou, T. Y.; Li, Z.; Osher, S.; Zhao, H., A hybrid method for moving interface problems with application to the Hele-Shaw flow, J. Comput. Phys., 134, 2, 236-252 (1997) · Zbl 0888.76067
[33] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 2, 489-528 (2000) · Zbl 0994.74082
[34] Xu, J.-J.; Li, Z.; Lowengrub, J.; Zhao, H., A level-set method for interfacial flows with surfactant, J. Comput. Phys., 212, 2, 590-616 (2006) · Zbl 1161.76548
[35] Xu, S.; Wang, Z. J., Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation, SIAM J. Sci. Comput., 27, 6, 1948-1980 (2006) · Zbl 1136.76346
[36] Lombard, B.; Piraux, J., Numerical treatment of two-dimensional interfaces for acoustic and elastic waves, J. Comput. Phys., 195, 1, 90-116 (2004) · Zbl 1087.76079
[37] Jayathilake, P.; Tan, Z.; Khoo, B.; Wijeysundera, N., Deformation and osmotic swelling of an elastic membrane capsule in Stokes flows by the immersed interface method, Chem. Eng. Sci., 65, 3, 1237-1252 (2010)
[38] Kolahdouz, E. M.; Salac, D., Electrohydrodynamics of three-dimensional vesicles: a numerical approach, SIAM J. Sci. Comput., 37, 3, B473-B494 (2015) · Zbl 1320.74112
[39] Kolahdouz, E. M.; Salac, D., A numerical model for the trans-membrane voltage of vesicles, Appl. Math. Lett., 39, 7-12 (2015) · Zbl 1320.78015
[40] Hu, W.-F.; Lai, M.-C.; Seol, Y.; Young, Y.-N., Vesicle electrohydrodynamic simulations by coupling immersed boundary and immersed interface method, J. Comput. Phys., 317, 66-81 (2016) · Zbl 1349.76938
[41] Patankar, N. A.; Singh, P.; Joseph, D. D.; Glowinski, R.; Pan, T.-W., A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow, 26, 9, 1509-1524 (2000) · Zbl 1137.76712
[42] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow, 25, 5, 755-794 (1999) · Zbl 1137.76592
[43] Patankar, N. A., Physical interpretation and mathematical properties of the stress-DLM formulation for rigid particulate flows, Int. J. Comput. Methods Eng. Sci. Mech., 6, 2, 137-143 (2005) · Zbl 07895413
[44] Bhalla, A. P.S.; Bale, R.; Griffith, B. E.; Patankar, N. A., A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies, J. Comput. Phys., 250, 446-476 (2013) · Zbl 1349.65403
[45] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D.; Periaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 2, 363-426 (2001) · Zbl 1047.76097
[46] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 2, 448-476 (2005) · Zbl 1138.76398
[47] Zhang, N.; Zheng, Z. C., An improved direct-forcing immersed-boundary method for finite difference applications, J. Comput. Phys., 221, 1, 250-268 (2007) · Zbl 1108.76051
[48] Vanella, M.; Balaras, E., A moving-least-squares reconstruction for embedded-boundary formulations, J. Comput. Phys., 228, 18, 6617-6628 (2009) · Zbl 1173.65333
[49] Taira, K.; Colonius, T., The immersed boundary method: a projection approach, J. Comput. Phys., 225, 2, 2118-2137 (2007) · Zbl 1343.76027
[50] Lācis, U.; Taira, K.; Bagheri, S., A stable fluid-structure-interaction solver for low-density rigid bodies using the immersed boundary projection method, J. Comput. Phys., 305, 300-318 (2016) · Zbl 1349.76060
[51] Li, R.-Y.; Xie, C.-M.; Huang, W.-X.; Xu, C.-X., An efficient immersed boundary projection method for flow over complex/moving boundaries, Comput. Fluids, 140, 122-135 (2016) · Zbl 1390.76591
[52] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Eng., 193, 21-22, 2051-2067 (2004) · Zbl 1067.76576
[53] Wang, X.; Zhang, L. T., Modified immersed finite element method for fully-coupled fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 267, 150-169 (2013) · Zbl 1286.74034
[54] Kallemov, B.; Bhalla, A.; Griffith, B.; Donev, A., An immersed boundary method for rigid bodies, Commun. Appl. Math. Comput. Sci., 11, 1, 79-141 (2016) · Zbl 1382.76191
[55] Balboa Usabiaga, F.; Kallemov, B.; Delmotte, B.; Bhalla, A.; Griffith, B.; Donev, A., Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach, Commun. Appl. Math. Comput. Sci., 11, 2, 217-296 (2017)
[56] Kim, Y.; Peskin, C. S., A penalty immersed boundary method for a rigid body in fluid, Phys. Fluids, 28, 3, Article 033603 pp. (2016)
[57] Feng, Z.-G.; Michaelides, E. E., The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J. Comput. Phys., 195, 2, 602-628 (2004) · Zbl 1115.76395
[58] Suzuki, K.; Inamuro, T., Effect of internal mass in the simulation of a moving body by the immersed boundary method, Comput. Fluids, 49, 1, 173-187 (2011) · Zbl 1271.76257
[59] Qin, J.; Andreopoulos, Y.; Jiang, X.; Dong, G.; Chen, Z., Efficient coupling of direct forcing immersed boundary-lattice Boltzmann method and finite element method to simulate fluid-structure interactions, Int. J. Numer. Methods Fluids, 1-28 (2019)
[60] Qin, J.; Kolahdouz, E. M.; Griffith, B. E., An immersed interface-lattice Boltzmann method for fluid-structure interaction, J. Comput. Phys., 428, Article 109807 pp. (2021) · Zbl 07511406
[61] Coquerelle, M.; Cottet, G.-H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, J. Comput. Phys., 227, 21, 9121-9137 (2008) · Zbl 1146.76038
[62] Gibou, F.; Min, C., Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions, J. Comput. Phys., 231, 8, 3246-3263 (2012) · Zbl 1400.76049
[63] Yang, J.; Balaras, E., An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, J. Comput. Phys., 215, 1, 12-40 (2006) · Zbl 1140.76355
[64] Kim, D.; Choi, H., Immersed boundary method for flow around an arbitrarily moving body, J. Comput. Phys., 212, 2, 662-680 (2006) · Zbl 1161.76520
[65] Schneiders, L.; Günther, C.; Meinke, M.; Schröder, W., An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows, J. Comput. Phys., 311, 62-86 (2016) · Zbl 1349.74345
[66] Pogorelov, A.; Schneiders, L.; Meinke, M.; Schröder, W., An adaptive Cartesian mesh based method to simulate turbulent flows of multiple rotating surfaces, Flow Turbul. Combust., 100, 1, 19-38 (2018)
[67] Xu, S., The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow, J. Comput. Phys., 227, 10, 5045-5071 (2008) · Zbl 1388.76280
[68] Kolahdouz, E. M.; Bhalla, A. P.S.; Craven, B. A.; Griffith, B. E., An immersed interface method for discrete surfaces, J. Comput. Phys., 400, Article 108854 pp. (2020) · Zbl 1453.76075
[69] Tan, Z.; Le, D.-V.; Lim, K. M.; Khoo, B., An immersed interface method for the incompressible Navier-Stokes equations with discontinuous viscosity across the interface, SIAM J. Sci. Comput., 31, 3, 1798-1819 (2009) · Zbl 1317.76065
[70] Tan, Z.; Lim, K.; Khoo, B., A level set-based immersed interface method for solving incompressible viscous flows with the prescribed velocity at the boundary, Int. J. Numer. Methods Fluids, 62, 3, 267-290 (2010) · Zbl 1377.76010
[71] Thekkethil, N.; Sharma, A., Level set function-based immersed interface method and benchmark solutions for fluid flexible-structure interaction, Int. J. Numer. Methods Fluids, 91, 3, 134-157 (2019)
[72] Layton, A. T., Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces, Comput. Fluids, 38, 2, 266-272 (2009) · Zbl 1237.76123
[73] Xu, S.; Wang, Z. J., A 3D immersed interface method for fluid-solid interaction, Comput. Methods Appl. Mech. Eng., 197, 25, 2068-2086 (2008) · Zbl 1158.74540
[74] Tan, Z.; Lim, K. M.; Khoo, B., An immersed interface method for Stokes flows with fixed/moving interfaces and rigid boundaries, J. Comput. Phys., 228, 18, 6855-6881 (2009) · Zbl 1261.76038
[75] Liu, Y.; Xu, S., The immersed interface method for non-smooth rigid objects in incompressible viscous flows, Commun. Comput. Phys., 29, 2, 510-533 (2020) · Zbl 1480.76084
[76] Nangia, N.; Patankar, N. A.; Bhalla, A. P.S., A DLM immersed boundary method based wave-structure interaction solver for high density ratio multiphase flows, J. Comput. Phys., 398, Article 108804 pp. (2019) · Zbl 1453.76138
[77] Nangia, N.; Griffith, B. E.; Patankar, N. A.; Bhalla, A. P.S., A robust incompressible Navier-Stokes solver for high density ratio multiphase flows, J. Comput. Phys., 390, 548-594 (2019) · Zbl 1452.76157
[78] Zheng, X.; Xue, Q.; Mittal, R.; Beilamowicz, S., A coupled sharp-interface immersed boundary-finite-element method for flow-structure interaction with application to human phonation, J. Biomech. Eng., 132, 11, Article 111003 pp. (2010)
[79] Yang, J.; Stern, F., A sharp interface direct forcing immersed boundary approach for fully resolved simulations of particulate flows, J. Fluids Eng., 136, 4, Article 040904 pp. (2014)
[80] Nobile, F.; Formaggia, L., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math., 7, 2, 105-132 (1999) · Zbl 0942.65113
[81] Matthies, H. G.; Steindorf, J., Partitioned strong coupling algorithms for fluid-structure interaction, Comput. Struct., 81, 8-11, 805-812 (2003)
[82] Dunbar, A. J.; Craven, B. A.; Paterson, E. G., Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms, Ocean Eng., 110, 98-105 (2015)
[83] Guidoboni, G.; Glowinski, R.; Cavallini, N.; Canic, S., Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow, J. Comput. Phys., 228, 18, 6916-6937 (2009) · Zbl 1261.76056
[84] Burman, E.; Fernández, M. A., Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Eng., 198, 5-8, 766-784 (2009) · Zbl 1229.76045
[85] Fernández, M.Á.; Moubachir, M., A Newton method using exact Jacobians for solving fluid-structure coupling, Comput. Struct., 83, 2-3, 127-142 (2005)
[86] Matthies, H. G.; Niekamp, R.; Steindorf, J., Algorithms for strong coupling procedures, Comput. Methods Appl. Mech. Eng., 195, 17-18, 2028-2049 (2006) · Zbl 1142.74050
[87] Degroote, J.; Bathe, K.-J.; Vierendeels, J., Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction, Comput. Struct., 87, 11-12, 793-801 (2009)
[88] Yang, J.; Preidikman, S.; Balaras, E., A strongly coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies, J. Fluids Struct., 24, 2, 167-182 (2008)
[89] Deparis, S.; Fernández, M. A.; Formaggia, L., Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, ESAIM: Math. Model. Numer. Anal., 37, 4, 601-616 (2003) · Zbl 1118.74315
[90] Küttler, U.; Wall, W. A., Fixed-point fluid-structure interaction solvers with dynamic relaxation, Comput. Mech., 43, 1, 61-72 (2008) · Zbl 1236.74284
[91] Causin, P.; Gerbeau, J.-F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Eng., 194, 42-44, 4506-4527 (2005) · Zbl 1101.74027
[92] Förster, C.; Wall, W. A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 196, 7, 1278-1293 (2007) · Zbl 1173.74418
[93] Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W., An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids, J. Comput. Phys., 269, 108-137 (2014) · Zbl 1349.74373
[94] Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Q., A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions, J. Comput. Phys., 373, 455-492 (2018) · Zbl 1416.76201
[95] Bukac, M.; Muha, B., Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid-structure interaction, SIAM J. Numer. Anal., 54, 5, 3032-3061 (2016) · Zbl 1457.65099
[96] Robertson, I.; Li, L.; Sherwin, S.; Bearman, P., A numerical study of rotational and transverse galloping rectangular bodies, J. Fluids Struct., 17, 5, 681-699 (2003)
[97] Andersen, A.; Pesavento, U.; Wang, Z. J., Unsteady aerodynamics of fluttering and tumbling plates, J. Fluid Mech., 541, 65-90 (2005) · Zbl 1082.76037
[98] Mordant, N.; Pinton, J.-F., Velocity measurement of a settling sphere, Eur. Phys. J. B, Condens. Matter Complex Syst., 18, 2, 343-352 (2000)
[99] Ten Cate, A.; Nieuwstad, C.; Derksen, J.; Van den Akker, H., Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity, Phys. Fluids, 14, 11, 4012-4025 (2002) · Zbl 1185.76073
[100] Horowitz, M.; Williamson, C., The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres, J. Fluid Mech., 651, 251-294 (2010) · Zbl 1189.76152
[101] Lai, M.-C.; Li, Z., A remark on jump conditions for the three-dimensional Navier-Stokes equations involving an immersed moving membrane, Appl. Math. Lett., 14, 2, 149-154 (2001) · Zbl 1013.76021
[102] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 2, 354-366 (1993) · Zbl 0768.76049
[103] Akkerman, I.; Bazilevs, Y.; Benson, D.; Farthing, M.; Kees, C., Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics, J. Appl. Mech., 79, 1, Article 010905 pp. (2012)
[104] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 3, 506-517 (1968) · Zbl 0184.38503
[105] Griffith, B. E., An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner, J. Comput. Phys., 228, 20, 7565-7595 (2009) · Zbl 1391.76474
[106] Griffith, B. E., On the volume conservation of the immersed boundary method, Commun. Comput. Phys., 12, 2, 401-432 (2012) · Zbl 1373.74098
[107] Rider, W. J.; Greenough, J. A.; Kamm, J. R., Accurate monotonicity-and extrema-preserving methods through adaptive nonlinear hybridizations, J. Comput. Phys., 225, 2, 1827-1848 (2007) · Zbl 1343.76036
[108] Colella, P.; Woodward, P. R., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 1, 174-201 (1984) · Zbl 0531.76082
[109] Griffith, B. E., Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, Int. J. Numer. Methods Biomed. Eng., 28, 3, 317-345 (2012) · Zbl 1243.92017
[110] Griffith, B. E.; Luo, X. Y., Hybrid finite difference/finite element version of the immersed boundary method, Int. J. Numer. Methods Biomed. Eng., 33, 11, Article e2888 pp. (2017), (31 pages)
[111] Bao, Y.; Huang, C.; Zhou, D.; Tu, J.; Han, Z., Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios, J. Fluids Struct., 35, 50-75 (2012)
[112] Yang, J.; Stern, F., A non-iterative direct forcing immersed boundary method for strongly-coupled fluid-solid interactions, J. Comput. Phys., 295, 779-804 (2015) · Zbl 1349.76556
[113] Kim, W.; Lee, I.; Choi, H., A weak-coupling immersed boundary method for fluid-structure interaction with low density ratio of solid to fluid, J. Comput. Phys., 359, 296-311 (2018) · Zbl 1383.74086
[114] Blackburn, H.; Karniadakis, G., Two- and three-dimensional simulations of vortex-induced vibration of a circular cylinder, (Third International Offshore and Polar Engineering Conference, Singapore, Vol. 3 (1993)), 715-720
[115] Yang, J.; Stern, F., A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions, J. Comput. Phys., 231, 15, 5029-5061 (2012) · Zbl 1351.74025
[116] Liu, C.; Hu, C., Block-based adaptive mesh refinement for fluid-structure interactions in incompressible flows, Comput. Phys. Commun., 232, 104-123 (2018) · Zbl 07694792
[117] Mannini, C.; Belloli, M.; Marra, A. M.; Bayati, I.; Giappino, S.; Robustelli, F.; Bartoli, G., Aeroelastic stability of two long-span arch structures: a collaborative experience in two wind tunnel facilities, Eng. Struct., 119, 252-263 (2016)
[118] Alonso, G.; Meseguer, J.; Sanz-Andrés, A.; Valero, E., On the galloping instability of two-dimensional bodies having elliptical cross-sections, J. Wind Eng. Ind. Aerodyn., 98, 8-9, 438-448 (2010)
[119] Yang, Y.; Zhao, L.; Tang, L., Comparative study of tip cross-sections for efficient galloping energy harvesting, Appl. Phys. Lett., 102, 6, Article 064105 pp. (2013)
[120] Vanella, M.; Rabenold, P.; Balaras, E., A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid-structure interaction problems, J. Comput. Phys., 229, 18, 6427-6449 (2010) · Zbl 1425.76174
[121] Hunt, J. C.R.; Wray, A. A.; Moin, P., Eddies, Streams, and Convergence Zones in Turbulent Flows, 193-208 (1988), Center for Turbulence Research, Proceedings of the Summer Program
[122] Scotten, L. N.; Walker, D. K., New laboratory technique measures projected dynamic area of prosthetic heart valves, J. Heart Valve Dis., 13, 1, 120-132 (2004), discussion 132—3
[123] Scotten, L. N.; Siegel, R., Importance of shear in prosthetic valve closure dynamics, J. Heart Valve Dis., 20, 6, 664-672 (2011)
[124] Griffith, B. E.; Luo, X.; McQueen, D. M.; Peskin, C. S., Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method, Int. J. Appl. Mech., 1, 01, 137-177 (2009)
[125] Lee, J. H.; Rygg, A. D.; Kolahdouz, E. M.; Rossi, S.; Retta, S. M.; Duraiswamy, N.; Scotten, L. N.; Craven, B. A.; Griffith, B. E., Fluid-structure interaction models of bioprosthetic heart valve dynamics in an experimental pulse duplicator, Ann. Biomed. Eng., 48, 5, 1-16 (2020)
[126] Travis, B.; Marzec, U.; Ellis, J.; Davoodi, P.; Momin, T.; Hanson, S.; Harker, L.; Yoganathan, A., The sensitivity of indicators of thrombosis initiation to a bileaflet prosthesis leakage stimulus, J. Heart Valve Dis., 10, 2, 228-238 (2001)
[127] Yoganathan, A. P.; He, Z.; Casey Jones, S., Fluid mechanics of heart valves, Annu. Rev. Biomed. Eng., 6, 331-362 (2004)
[128] Rahbar, E.; Mori, D.; Moore, J. E., Three-dimensional analysis of flow disturbances caused by clots in inferior vena cava filters, J. Vasc. Interv. Radiol., 22, 6, 835-842 (2011)
[129] Craven, B. A.; Aycock, K. I.; Manning, K. B., Steady flow in a patient-averaged inferior vena cava-Part II: Computational fluid dynamics verification and validation, Cardiovasc. Eng. Technol., 9, 4, 654-673 (2018)
[130] Gallagher, M. B.; Aycock, K. I.; Craven, B. A.; Manning, K. B., Steady flow in a patient-averaged inferior vena cava-Part I: particle image velocimetry measurements at rest and exercise conditions, Cardiovasc. Eng. Technol., 9, 4, 641-653 (2018)
[131] Le Tallec, P.; Mouro, J., Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Eng., 190, 24-25, 3039-3067 (2001) · Zbl 1001.74040
[132] Vigmostad, S. C.; Udaykumar, H. S.; Lu, J.; Chandran, K. B., Fluid-structure interaction methods in biological flows with special emphasis on heart valve dynamics, Int. J. Numer. Methods Biomed. Eng., 26, 3-4, 435-470 (2010) · Zbl 1183.92023
[133] Banks, J. W.; Henshaw, W. D.; Sjögreen, B., A stable FSI algorithm for light rigid bodies in compressible flow, J. Comput. Phys., 245, 399-430 (2013) · Zbl 1349.76429
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.