×

A remeshed vortex method for mixed rigid/soft body fluid-structure interaction. (English) Zbl 07515467

Summary: We outline a 2D algorithm for solving incompressible flow-structure interaction problems for mixed rigid/soft body representations, within a consistent framework based on the remeshed vortex method. We adopt the one-continuum formulation to represent both solid and fluid phases on an Eulerian grid, separated by a diffuse interface. Rigid solids are treated using Brinkman penalization while an inverse map technique is used to obtain elastic stresses in the hyperelastic solid phase. We test our solver against a number of benchmark problems, which demonstrate physical accuracy and first to second order convergence in space and time. Benchmarks are complemented by additional investigations that illustrate the ability of our numerical scheme to capture essential fluid-structure interaction phenomena across a variety of scenarios involving internal muscular actuation, self propulsion, multi-body contact, heat transfer and rectified viscous streaming effects. Through these illustrations, we showcase the ability of our solver to robustly deal with different constitutive models and boundary conditions, solve disparate multi-physics problems and achieve faster time-to-solutions by sidestepping CFL time step restrictions.

MSC:

76Mxx Basic methods in fluid mechanics
76Dxx Incompressible viscous fluids
74Fxx Coupling of solid mechanics with other effects

Software:

MRAG-I2D; SLIC

References:

[1] Alben, S.; Shelley, M.; Zhang, J., Drag reduction through self-similar bending of a flexible body, Nature, 420, 479-481 (2002)
[2] Pozrikidis, C., Modeling and Simulation of Capsules and Biological Cells (2003), CRC Press · Zbl 1026.92002
[3] Alben, S.; Shelley, M.; Zhang, J., How flexibility induces streamlining in a two-dimensional flow, Phys. Fluids, 16, 1694-1713 (2004) · Zbl 1186.76020
[4] Tytell, E. D.; Leftwich, M. C.; Hsu, C.-Y.; Griffith, B. E.; Cohen, A. H.; Smits, A. J.; Hamlet, C.; Fauci, L. J., Role of body stiffness in undulatory swimming: insights from robotic and computational models, Phys. Rev. Fluids, 1, Article 073202 pp. (2016)
[5] Parthasarathy, T.; Das, S. P., Effect of synthetic jet parameters on controlled flow over an airfoil, Fluid Mech. Res., 44 (2017)
[6] Goza, A.; Colonius, T.; Sader, J. E., Global modes and nonlinear analysis of inverted-flag flapping, J. Fluid Mech., 857, 312-344 (2018) · Zbl 1415.76125
[7] LaGrone, J.; Cortez, R.; Fauci, L., Elastohydrodynamics of swimming helices: effects of flexibility and confinement, Phys. Rev. Fluids, 4, Article 033102 pp. (2019)
[8] Bhosale, Y.; Esmaili, E.; Bhar, K.; Jung, S., Bending, twisting and flapping leaf upon raindrop impact, Bioinspir. Biomim., 15, Article 036007 pp. (2020)
[9] Park, S.-J.; Gazzola, M.; Park, K. S.; Park, S.; Di Santo, V.; Blevins, E. L.; Lind, J. U.; Campbell, P. H.; Dauth, S.; Capulli, A. K., Phototactic guidance of a tissue-engineered soft-robotic ray, Science, 353, 158-162 (2016)
[10] Zhang, X.; Chan, F. K.; Parthasarathy, T.; Gazzola, M., Modeling and simulation of complex dynamic musculoskeletal architectures, Nat. Commun., 10, 1-12 (2019)
[11] Aydin, O.; Zhang, X.; Nuethong, S.; Pagan-Diaz, G. J.; Bashir, R.; Gazzola, M.; Saif, M. T.A., Neuromuscular actuation of biohybrid motile bots, Proc. Natl. Acad. Sci. USA, 116, 19841-19847 (2019)
[12] Gazzola, M.; Argentina, M.; Mahadevan, L., Scaling macroscopic aquatic locomotion, Nat. Phys., 10, 758-761 (2014)
[13] Gazzola, M.; Argentina, M.; Mahadevan, L., Gait and speed selection in slender inertial swimmers, Proc. Natl. Acad. Sci. USA, 112, 3874-3879 (2015)
[14] Ceylan, H.; Giltinan, J.; Kozielski, K.; Sitti, M., Mobile microrobots for bioengineering applications, Lab Chip, 17, 1705-1724 (2017)
[15] Lutz, B. R.; Chen, J.; Schwartz, D. T., Microscopic steady streaming eddies created around short cylinders in a channel: flow visualization and Stokes layer scaling, Phys. Fluids, 17, Article 023601 pp. (2005) · Zbl 1187.76325
[16] Marmottant, P.; Hilgenfeldt, S., A bubble-driven microfluidic transport element for bioengineering, Proc. Natl. Acad. Sci. USA, 101, 9523-9527 (2004)
[17] Liu, R. H.; Lenigk, R.; Druyor-Sanchez, R. L.; Yang, J.; Grodzinski, P., Hybridization enhancement using cavitation microstreaming, Anal. Chem., 75, 1911-1917 (2003)
[18] Jain, S. S.; Kamrin, K.; Mani, A., A conservative and non-dissipative Eulerian formulation for the simulation of soft solids in fluids, J. Comput. Phys., 399, Article 108922 pp. (2019) · Zbl 1453.74029
[19] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, 20, 1081-1106 (1995) · Zbl 0881.76072
[20] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[21] Price, D. J., Smoothed particle hydrodynamics: things I wish my mother taught me (2011), arXiv preprint
[22] Shadloo, M. S.; Oger, G.; Le Touzé, D., Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges, Comput. Fluids, 136, 11-34 (2016) · Zbl 1390.76764
[23] Sethian, J. A., Level Set Methods and Fast Marching Methods (1999) · Zbl 0929.65066
[24] Noh, W. F.; Woodward, P., Slic (simple line interface calculation), (Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics. Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, June 28-July 2, 1976, Twente University, Enschede (1976), Springer), 330-340 · Zbl 0382.76084
[25] Valkov, B.; Rycroft, C. H.; Kamrin, K., Eulerian method for multiphase interactions of soft solid bodies in fluids, J. Appl. Mech., 82 (2015)
[26] Sugiyama, K.; Ii, S.; Takeuchi, S.; Takagi, S.; Matsumoto, Y., A full Eulerian finite difference approach for solving fluid-structure coupling problems, J. Comput. Phys., 230, 596-627 (2011) · Zbl 1283.74010
[27] Sugiyama, K.; Ii, S.; Takeuchi, S.; Takagi, S.; Matsumoto, Y., Full Eulerian simulations of biconcave neo-hookean particles in a Poiseuille flow, Comput. Mech., 46, 147-157 (2010) · Zbl 1301.76078
[28] Nagano, N.; Sugiyama, K.; Takeuchi, S.; II, S.; Takagi, S.; Matsumoto, Y., Full-Eulerian finite-difference simulation of fluid flow in hyperelastic wavy channel, J. Fluid Sci. Technol., 5, 475-490 (2010)
[29] Hu, H. H.; Patankar, N. A.; Zhu, M., Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique, J. Comput. Phys., 169, 427-462 (2001) · Zbl 1047.76571
[30] Tezduyar, T. E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. Methods Appl. Mech. Eng., 94, 353-371 (1992) · Zbl 0745.76045
[31] Takizawa, K.; Henicke, B.; Puntel, A.; Spielman, T.; Tezduyar, T. E., Space-time computational techniques for the aerodynamics of flapping wings, J. Appl. Mech., 79 (2012)
[32] Watanabe, H.; Sugiura, S.; Kafuku, H.; Hisada, T., Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method, Biophys. J., 87, 2074-2085 (2004)
[33] Takizawa, K.; Henicke, B.; Tezduyar, T. E.; Hsu, M.-C.; Bazilevs, Y., Stabilized space-time computation of wind-turbine rotor aerodynamics, Comput. Mech., 48, 333-344 (2011) · Zbl 1398.76127
[34] Hu, H. H., Direct simulation of flows of solid-liquid mixtures, Int. J. Multiph. Flow, 22, 335-352 (1996) · Zbl 1135.76442
[35] Griffith, B. E.; Patankar, N. A., Immersed methods for fluid-structure interaction, Annu. Rev. Fluid Mech., 52, 421-448 (2020) · Zbl 1439.76140
[36] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[37] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 448-476 (2005) · Zbl 1138.76398
[38] Taira, K.; Colonius, T., The immersed boundary method: a projection approach, J. Comput. Phys., 225, 2118-2137 (2007) · Zbl 1343.76027
[39] Wang, C.; Eldredge, J. D., Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method, J. Comput. Phys., 295, 87-113 (2015) · Zbl 1349.76280
[40] Goza, A.; Colonius, T., A strongly-coupled immersed-boundary formulation for thin elastic structures, J. Comput. Phys., 336, 401-411 (2017) · Zbl 1375.76047
[41] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Eng., 193, 2051-2067 (2004) · Zbl 1067.76576
[42] Zhao, H.; Freund, J. B.; Moser, R. D., A fixed-mesh method for incompressible flow-structure systems with finite solid deformations, J. Comput. Phys., 227, 3114-3140 (2008) · Zbl 1329.74313
[43] Tian, F.-B.; Dai, H.; Luo, H.; Doyle, J. F.; Rousseau, B., Fluid-structure interaction involving large deformations: 3d simulations and applications to biological systems, J. Comput. Phys., 258, 451-469 (2014) · Zbl 1349.76274
[44] Griffith, B. E.; Luo, X., Hybrid finite difference/finite element immersed boundary method, Int. J. Numer. Methods Biomed. Eng., 33 (2017)
[45] Li, Z.; Lai, M.-C., The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171, 822-842 (2001) · Zbl 1065.76568
[46] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D.; Periaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., 169, 363-426 (2001) · Zbl 1047.76097
[47] Yu, Z., A dlm/fd method for fluid/flexible-body interactions, J. Comput. Phys., 207, 1-27 (2005) · Zbl 1177.76304
[48] Engels, T.; Kolomenskiy, D.; Schneider, K.; Sesterhenn, J., Numerical simulation of fluid-structure interaction with the volume penalization method, J. Comput. Phys., 281, 96-115 (2015) · Zbl 1351.76202
[49] Eldredge, J. D., Numerical simulation of the fluid dynamics of 2d rigid body motion with the vortex particle method, J. Comput. Phys., 221, 626-648 (2007) · Zbl 1216.76059
[50] Eldredge, J. D., Dynamically coupled fluid-body interactions in vorticity-based numerical simulations, J. Comput. Phys., 227, 9170-9194 (2008) · Zbl 1146.76039
[51] Beale, J. T.; Majda, A., Vortex methods. I. Convergence in three dimensions, Math. Comput., 39, 1-27 (1982) · Zbl 0488.76024
[52] Leonard, A., Computing three-dimensional incompressible flows with vortex elements, Annu. Rev. Fluid Mech., 17, 523-559 (1985) · Zbl 0596.76026
[53] Raviart, P.-A., An analysis of particle methods, (Numerical Methods in Fluid Dynamics (1985), Springer), 243-324 · Zbl 0598.76003
[54] Cottet, G.-H.; Koumoutsakos, P. D., Vortex Methods: Theory and Practice, vol. 8 (2000), Cambridge University Press: Cambridge University Press Cambridge
[55] Winckelmans, G., Vortex Methods, Encyclopedia of Computational Mechanics (2004)
[56] Koumoutsakos, P., Multiscale flow simulations using particles, Annu. Rev. Fluid Mech., 37, 457-487 (2005) · Zbl 1117.76054
[57] Coquerelle, M.; Cottet, G.-H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, J. Comput. Phys., 227, 9121-9137 (2008) · Zbl 1146.76038
[58] Gazzola, M.; Chatelain, P.; Van Rees, W. M.; Koumoutsakos, P., Simulations of single and multiple swimmers with non-divergence free deforming geometries, J. Comput. Phys., 230, 7093-7114 (2011) · Zbl 1328.76085
[59] Gazzola, M.; Van Rees, W. M.; Koumoutsakos, P., C-start: optimal start of larval fish, J. Fluid Mech., 698, 5-18 (2012) · Zbl 1250.76206
[60] Van Rees, W. M.; Gazzola, M.; Koumoutsakos, P., Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers, J. Fluid Mech., 722 (2013) · Zbl 1287.76259
[61] Rossinelli, D.; Hejazialhosseini, B.; van Rees, W.; Gazzola, M.; Bergdorf, M.; Koumoutsakos, P., Mrag-i2d: multi-resolution adapted grids for remeshed vortex methods on multicore architectures, J. Comput. Phys., 288, 1-18 (2015) · Zbl 1351.76026
[62] Bernier, C.; Gazzola, M.; Ronsse, R.; Chatelain, P., Simulations of propelling and energy harvesting articulated bodies via vortex particle-mesh methods, J. Comput. Phys., 392, 34-55 (2019) · Zbl 1452.74034
[63] Gazzola, M.; Hejazialhosseini, B.; Koumoutsakos, P., Reinforcement learning and wavelet adapted vortex methods for simulations of self-propelled swimmers, SIAM J. Sci. Comput., 36, B622-B639 (2014) · Zbl 1298.76248
[64] Gazzola, M.; Mimeau, C.; Tchieu, A.; Koumoutsakos, P., Flow mediated interactions between two cylinders at finite re numbers, Phys. Fluids, 24, Article 043103 pp. (2012)
[65] Lorieul, G., Development and validation of a 2D Vortex Particle-Mesh method for incompressible multiphase flows (2018), UCL-Université Catholique de Louvain, Ph.D. thesis
[66] Eldredge, J. D.; Colonius, T.; Leonard, A., A vortex particle method for two-dimensional compressible flow, J. Comput. Phys., 179, 371-399 (2002) · Zbl 1130.76393
[67] Parmentier, P.; Winckelmans, G.; Chatelain, P., A vortex particle-mesh method for subsonic compressible flows, J. Comput. Phys., 354, 692-716 (2018) · Zbl 1380.76029
[68] Winckelmans, G.; Leonard, A., Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows, J. Comput. Phys., 109, 247-273 (1993) · Zbl 0795.76065
[69] Ploumhans, P.; Winckelmans, G., Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry, J. Comput. Phys., 165, 354-406 (2000) · Zbl 1006.76068
[70] Engels, T.; Kolomenskiy, D.; Schneider, K.; Sesterhenn, J., Two-dimensional simulation of the fluttering instability using a pseudospectral method with volume penalization, Comput. Struct., 122, 101-112 (2013)
[71] Bower, A. F., Applied Mechanics of Solids (2009), CRC Press
[72] Rossinelli, D.; Bergdorf, M.; Cottet, G.-H.; Koumoutsakos, P., Gpu accelerated simulations of bluff body flows using vortex particle methods, J. Comput. Phys., 229, 3316-3333 (2010) · Zbl 1307.76066
[73] Carbou, G.; Fabrie, P., Boundary layer for a penalization method for viscous incompressible flow, Adv. Differ. Equ., 8, 1453-1480 (2003) · Zbl 1097.76013
[74] Angot, P.; Bruneau, C.-H.; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 497-520 (1999) · Zbl 0921.76168
[75] Bost, C.; Cottet, G.-H.; Maitre, E., Convergence analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid, SIAM J. Numer. Anal., 48, 1313-1337 (2010) · Zbl 1213.35335
[76] Angot, P.; Carbou, G.; Péron, V., Asymptotic study for Stokes-Brinkman model with jump embedded transmission conditions, Asymptot. Anal., 96, 223-249 (2016) · Zbl 1346.35156
[77] Kamrin, K.; Nave, J.-C., An Eulerian approach to the simulation of deformable solids: application to finite-strain elasticity (2009), arXiv preprint
[78] Belytschko, T.; Liu, W. K.; Moran, B.; Elkhodary, K., Nonlinear Finite Elements for Continua and Structures (2013), John Wiley & Sons · Zbl 1279.74002
[79] Pons, J.-P.; Hermosillo, G.; Keriven, R.; Faugeras, O., Maintaining the point correspondence in the level set framework, J. Comput. Phys., 220, 339-354 (2006) · Zbl 1107.65075
[80] Koopman, A.; Geijselaers, H. J.; Nilsen, K.; Koenis, P., Numerical flow front tracking for aluminium extrusion of a tube and a comparison with experiments, Int. J. Mater. Forming, 1, 423-426 (2008)
[81] Cottet, G.-H.; Maitre, E.; Milcent, T., Eulerian formulation and level set models for incompressible fluid-structure interaction, Modél. Math. Anal. Numér., 42, 471-492 (2008) · Zbl 1163.76040
[82] Levin, D. I.; Litven, J.; Jones, G. L.; Sueda, S.; Pai, D. K., Eulerian solid simulation with contact, ACM Trans. Graph., 30, 1-10 (2011)
[83] Dunne, T., An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaptation, Int. J. Numer. Methods Fluids, 51, 1017-1039 (2006) · Zbl 1158.76400
[84] Milcent, T.; Maitre, E., Eulerian Model of Immersed Elastic Surfaces with Full Membrane Elasticity (2016) · Zbl 1338.74040
[85] Rycroft, C. H.; Wu, C.-H.; Yu, Y.; Kamrin, K., Reference map technique for incompressible fluid-structure interaction (2018), arXiv preprint
[86] Nardinocchi, P.; Teresi, L., On the active response of soft living tissues, J. Elast., 88, 27-39 (2007) · Zbl 1115.74349
[87] Fan, Y.; Litven, J.; Pai, D. K., Active volumetric musculoskeletal systems, ACM Trans. Graph., 33, 152 (2014)
[88] Kataoka, I.; Ishii, M.; Serizawa, A., Local formulation and measurements of interfacial area concentration in two-phase flow, Int. J. Multiph. Flow, 12, 505-529 (1986) · Zbl 0617.76111
[89] Hockney, R.; Eastwood, J., Computer Simulation Using Particles (1989), CRC Press · Zbl 0662.76002
[90] Chatelain, P.; Koumoutsakos, P., A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions, J. Comput. Phys., 229, 2425-2431 (2010) · Zbl 1423.76332
[91] Rasmussen, J. T.; Cottet, G.-H.; Walther, J. H., A multiresolution remeshed vortex-in-cell algorithm using patches, J. Comput. Phys., 230, 6742-6755 (2011) · Zbl 1408.76422
[92] Hejlesen, M. M.; Koumoutsakos, P.; Leonard, A.; Walther, J. H., Iterative Brinkman penalization for remeshed vortex methods, J. Comput. Phys., 280, 547-562 (2015) · Zbl 1349.76083
[93] Gillis, T.; Winckelmans, G.; Chatelain, P., An efficient iterative penalization method using recycled Krylov subspaces and its application to impulsively started flows, J. Comput. Phys., 347, 490-505 (2017) · Zbl 1380.76090
[94] Hume, L.; Poncet, P., A velocity-vorticity method for highly viscous 3d flows with application to digital rock physics, J. Comput. Phys., 425, Article 109910 pp. (2021) · Zbl 07508505
[95] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[96] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, (Upwind and High-Resolution Schemes (1989), Springer), 328-374
[97] Hieber, S. E.; Koumoutsakos, P., A Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue, J. Comput. Phys., 227, 9195-9215 (2008) · Zbl 1146.74053
[98] Kolomenskiy, D.; Schneider, K., A Fourier spectral method for the Navier-Stokes equations with volume penalization for moving solid obstacles, J. Comput. Phys., 228, 5687-5709 (2009) · Zbl 1169.76045
[99] Monaghan, J., Extrapolating B splines for interpolation, J. Comput. Phys., 60, 253-262 (1985) · Zbl 0588.41005
[100] Etancelin, J.-M.; Moonen, P.; Poncet, P., Improvement of remeshed Lagrangian methods for the simulation of dissolution processes at pore-scale, Adv. Water Resour., 146, Article 103780 pp. (2020)
[101] Ii, S.; Sugiyama, K.; Takeuchi, S.; Takagi, S.; Matsumoto, Y., An implicit full Eulerian method for the fluid-structure interaction problem, Int. J. Numer. Methods Fluids, 65, 150-165 (2011) · Zbl 1428.76169
[102] Freund, J. B., Numerical simulation of flowing blood cells, Annu. Rev. Fluid Mech., 46, 67-95 (2014) · Zbl 1297.76198
[103] Massey, B. S.; Ward-Smith, J., Mechanics of Fluids, vol. 1 (1998), CRC Press
[104] Larson, R.; Mead, D., The Ericksen number and deborah number cascades in sheared polymeric nematics, Liq. Cryst., 15, 151-169 (1993)
[105] Roache, P. J., Code verification by the method of manufactured solutions, J. Fluids Eng., 124, 4-10 (2002)
[106] Parthasarathy, T.; Bhosale, Y.; Gazzola, M., A simple, rigorous benchmark for fully coupled flow-structure interaction algorithms (2020)
[107] Robinson-Mosher, A.; Schroeder, C.; Fedkiw, R., A symmetric positive definite formulation for monolithic fluid structure interaction, J. Comput. Phys., 230, 1547-1566 (2011) · Zbl 1390.74054
[108] Bar-Lev, M.; Yang, H., Initial flow field over an impulsively started circular cylinder, J. Fluid Mech., 72, 625-647 (1975) · Zbl 0317.76018
[109] Stuart, J., Double boundary layers in oscillatory viscous flow, J. Fluid Mech., 24, 673-687 (1966) · Zbl 0139.21704
[110] Bertelsen, A.; Svardal, A.; Tjøtta, S., Nonlinear streaming effects associated with oscillating cylinders, J. Fluid Mech., 59, 493-511 (1973) · Zbl 0271.76025
[111] Parthasarathy, T., Viscous streaming-enhanced inertial particle transport (2018), University of Illinois at Urbana-Champaign, Master’s thesis
[112] Parthasarathy, T.; Chan, F. K.; Gazzola, M., Streaming-enhanced flow-mediated transport, J. Fluid Mech., 878, 647-662 (2019) · Zbl 1430.76508
[113] Riley, N., On a sphere oscillating in a viscous fluid, Q. J. Mech. Appl. Math., 19, 461-472 (1966)
[114] Kotas, C.; Yoda, M.; Rogers, P., Visualization of steady streaming near oscillating spheroids, Exp. Fluids, 42, 111-121 (2007)
[115] Bhosale, Y., Effects of shape geometry in viscous streaming (2019), University of Illinois at Urbana-Champaign, Master’s thesis
[116] Bhosale, Y.; Parthasarathy, T.; Gazzola, M., Shape curvature effects in viscous streaming, J. Fluid Mech., 898, A13 (2020) · Zbl 1460.76964
[117] Wang, D.; Tarbell, J., Nonlinear analysis of flow in an elastic tube (artery): steady streaming effects, J. Fluid Mech., 239, 341-358 (1992) · Zbl 0807.76100
[118] Orlandi, P., Vortex dipole rebound from a wall, Phys. Fluids A, Fluid Dyn., 2, 1429-1436 (1990)
[119] Ramiere, I.; Angot, P.; Belliard, M., A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput. Methods Appl. Mech. Eng., 196, 766-781 (2007) · Zbl 1121.65364
[120] Kadoch, B.; Kolomenskiy, D.; Angot, P.; Schneider, K., A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles, J. Comput. Phys., 231, 4365-4383 (2012) · Zbl 1244.76074
[121] Valluvan, N. A., Development of a thermal flow solver using Remeshed Vortex Methods (2018), University of Illinois at Urbana-Champaign, Master’s thesis
[122] Russell, D.; Wang, Z. J., A Cartesian grid method for modeling multiple moving objects in 2d incompressible viscous flow, J. Comput. Phys., 191, 177-205 (2003) · Zbl 1160.76389
[123] Nakamura, H.; Igarashi, T., Variation of Nusselt number with flow regimes behind a circular cylinder for Reynolds numbers from 70 to 30 000, Int. J. Heat Mass Transf., 47, 5169-5173 (2004)
[124] Turek, S.; Hron, J.; Razzaq, M.; Wobker, H.; Schäfer, M., Numerical benchmarking of fluid-structure interaction: a comparison of different discretization and solution approaches, (Fluid Structure Interaction II (2011), Springer), 413-424 · Zbl 1215.76061
[125] Xu, S.; Wang, Z. J., An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys., 216, 454-493 (2006) · Zbl 1220.76058
[126] Jiang, C.; Yao, J.-Y.; Zhang, Z.-Q.; Gao, G.-J.; Liu, G., A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids, Comput. Methods Appl. Mech. Eng., 340, 24-53 (2018) · Zbl 1440.76071
[127] Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D., Xsede: accelerating scientific discovery, Comput. Sci. Eng., 16, 62-74 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.