×

A Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. (English) Zbl 1146.74053

Summary: We present a novel Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. Linear solids are represented by the Lagrangian formulation of stress-strain relationship that is extended to nonlinear solids by using the Lagrangian evolution of the deformation gradient described in a moving framework. The present method introduces a level set description, along with the particles, to capture the body deformations and to enforce the boundary conditions. Furthermore, the accuracy of the method in cases of large deformations is ensured by implementing a particle remeshing procedure. The method is validated in several benchmark problems, in two and three dimensions, and the results compare well with the results of respective finite elements simulations. In simulations of large solid deformation under plane strain compression, the finite element solver exhibits spurious structures that are not present in the Lagrangian particle simulations. The particle simulations are compared with experimental results in an aspiration test of liver tissue.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74L10 Soil and rock mechanics
74B20 Nonlinear elasticity
92C10 Biomechanics

Software:

PPM
Full Text: DOI

References:

[1] Beale, J. T., A convergent 3-D vortex method with grid-free stretching, Math. Comput., 46, 401-424 (1986) · Zbl 0602.76024
[2] Chaniotis, A. K.; Poulikakos, D.; Koumoutsakos, P., Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows, J. Comput. Phys., 182, 1, 67-90 (2002) · Zbl 1048.76046
[3] Christensen, R. M., Theory of Viscoelasticity (2003), Dover Publications · Zbl 0456.73021
[4] Cottet, G.-H., Artificial viscosity models for vortex and particle methods, J. Comput. Phys., 127, 299-308 (1996) · Zbl 0860.76065
[5] Cottet, G.-H.; Koumoutsakos, P., Vortex Methods - Theory and Practice (2000), Cambridge University Press: Cambridge University Press New York
[6] Danielson, K. T.; Hao, S.; Liu, W. K.; Uras, R. A.; Li, S., Parallel computation of meshless methods for explicit dynamic analysis, Int. J. Numer. Methods Eng., 47, 1323-1341 (2000) · Zbl 0981.74078
[7] G. Debunne, M. Desbrun, M.-P. Cani, A. Barr, Dynamic real-time deformations using space and timing adaptive sampling, in: Eugene Fiume (Ed.), Conference Proceedings SIGGRAPH, ACM Press/ACM SIGGRAPH, 2001, pp. 31-36.; G. Debunne, M. Desbrun, M.-P. Cani, A. Barr, Dynamic real-time deformations using space and timing adaptive sampling, in: Eugene Fiume (Ed.), Conference Proceedings SIGGRAPH, ACM Press/ACM SIGGRAPH, 2001, pp. 31-36.
[8] Degond, P.; Mas-Gallic, S., The weighted particle method for convection-diffusion equations. Part 1: The case of an isotropic viscosity, Math. Comput., 53, 188, 485-507 (1989) · Zbl 0676.65121
[9] Doblare, M.; Cueto, E.; Calvo, B.; Martinez, M. A.; Garcia, J. M.; Cegonino, J., On the employ of meshless methods in biomechanics, Comput. Meth. Appl. Mech. Eng., 194, 801-821 (2005) · Zbl 1112.74563
[10] Eldredge, Jeff D.; Colonius, Tim; Leonard, Anthony, A vortex particle method for two-dimensional compressible flow, J. Comput. Phys., 179, 371-399 (2002) · Zbl 1130.76393
[11] Eldredge, Jeff D.; Leonard, Anthony; Colonius, Tim, A general deterministic treatment of derivatives in particle methods, J. Comput. Phys., 180, 2, 686-709 (2002) · Zbl 1143.76550
[12] Fung, Y. C., Biomechanics, Mechanical Properties of Living Tissues (1993), Springer-Verlag
[13] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[14] Gingold, R. A.; Monaghan, J. J., The reliability of finite-difference and particle methods for fragmentation problems, Mon. Not. R. Astron. Soc., 199, 1, 115-119 (1982) · Zbl 0487.76010
[15] Gray, J. P.; Monaghan, J. J.; Swift, R. P., SPH elastic dynamics, Comput. Meth. Appl. Mech. Eng., 190, 6641-6662 (2001) · Zbl 1021.74050
[16] Guilkey, J. E.; Hoying, J. B.; Weiss, J. A., Computational modeling of multicellular constructs with the material point method, J. Biomech., 39, 11, 2079-2086 (2006)
[17] Hald, Ole H., Convergence of vortex methods for Euler’s equations, III, SIAM J. Numer. Anal., 24, 3, 538-582 (1987) · Zbl 0616.76028
[18] Hieber, S. E.; Walther, J. H.; Koumoutsakos, P., Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs, J. Technol. Health Care, 12, 4, 305-314 (2004)
[19] Hieber, Simone Elke; Koumoutsakos, Petros, A Lagrangian particle level set method, J. Comput. Phys., 210, 342-367 (2005) · Zbl 1076.65087
[20] Holzapfel, Gerhard, Nonlinear Solid Mechanics (2000), John Wiley & Sons · Zbl 0980.74001
[21] Hoover, W. G.; Hoover, C. G.; Merritt, E. C., Smooth-particle applied mechanics: conservation of angular momentum with tensile stability and velocity averaging, Phys. Rev. E, 69, 1 (2004)
[22] Hosseini, S. M.; Manzari, M. T.; Hannani, S. K., A fully explicit three-step SPH algorithm for simulation of non-newtonian fluid flow, Int. J. Heat Fluid Flow, 17, 7-8, 715-735 (2007) · Zbl 1231.76232
[23] Hu, X. Y.; Adams, N. A., Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows, Phys. Fluids, 18, 10 (2006) · Zbl 1136.76419
[24] Johnson, G. R.; Beissel, S. R., Normalized smoothing functions for SPH impact computations, Int. J. Numer. Methods Eng., 16, 2725-2741 (1997) · Zbl 0880.73076
[25] Khayyer, A.; Gotoh, H.; Shao, S. D., Corrected incompressible SPH method for accurate water-surface tracking in breaking waves, Coastel Eng., 55, 236-250 (2008)
[26] Koumoutsakos, P., Vorticity flux control in a turbulent channel flow, Phys. Fluids, 11, 2, 248-250 (1999) · Zbl 1147.76436
[27] Koumoutsakos, P., Multiscale flow simulations using particles, Annu. Rev. Fluid Mech., 37, 457-487 (2005) · Zbl 1117.76054
[28] Laigle, D.; Lachamp, P.; Naaim, M., SPH-based numerical investigation of mudflow and other complex fluid flow interactions with structures, Comput. Geo., 4, 297-306 (2007) · Zbl 1388.76299
[29] Leonard, A., Computing three-dimensional incompressible flows with vortex elements, Annu. Rev. Fluid Mech., 17, 523-559 (1985) · Zbl 0596.76026
[30] Liu, W. K.; Jun, S.; Zhang, S., Reproducing kernel particle methods, Int. J. Numer. Methods Eng., 20, 8-9, 1081-1106 (1995) · Zbl 0881.76072
[31] Molinari, E.; Fato, M.; DeLeo, G.; Riccardo, D.; Beltrame, F., Simulation of the biomechanical behavior of the skin in virtual surgical applications by finite element method, IEEE Trans. Biomed. Eng., 52, 9, 1514-1521 (2005)
[32] Monaghan, J. J., Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543-574 (1992)
[33] Monaghan, J. J., SPH without a tensile instability, J. Comput. Phys., 159, 290-311 (2000) · Zbl 0980.76065
[34] Monaghan, J. J., Smoothed particle hydrodynamics, J. Comput. Phys., 68, 8, 1703-1759 (2005)
[35] Nava, Alessandro; Mazza, Edoardo; Kleinermann, Frederic; Avis, Nick; McClure, John, Determination of the mechanical properties of soft human tissue through aspiration experiments, Lect. Notes Comput. Sci., 1878, 222-229 (2003)
[36] Nava, Alessandro; Mazza, Edoardo; Kleinermann, Frederic; Avis, Nick; McClure, John; Bajka, Michael, Evaluation of the mechanical properties of human liver and kidney through aspiration experiments, J. Technol. Health Care, 12, 269-280 (2004)
[37] Osher, Stanley; Sethian, James A., Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[38] Randles, P. W.; Libersky, L. D., Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Meth. Appl. Mech. Engng., 139, 375-408 (1996) · Zbl 0896.73075
[39] Randles, P. W.; Libersky, L. D., Normalized SPH with stress points, Int. J. Numer. Methods Eng., 48, 1445-1462 (2000) · Zbl 0963.74079
[40] Reddy, J. N., Finite Element Method (1993), McGraw Hill, Inc. · Zbl 0782.76059
[41] Richardson, L. F., The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam, Phil. Trans. Roy. Soc. Lond., 210, 307-357 (1910) · JFM 42.0873.02
[42] Sbalzarini, I. F.; Walther, J. H.; Bergdorf, M.; Hieber, S. E.; Kotsalis, E. M.; Koumoutsakos, P., PPM - a highly efficient parallel particle-mesh library for the simulation of continuum systems, J. Comput. Phys., 215, 566-588 (2006) · Zbl 1173.76398
[43] Sethian, J. A., A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. USA, 93, 4, 1591-1595 (1996) · Zbl 0852.65055
[44] D. Shiels, A. Leonard, A. Stagg, Computational investigation of drag reduction on a rotationally oscillating cylinder, in: Yves Gagnon, Georges-Henri Cottet, David G. Dritschel, Ahmed F. Ghoniem, Eckart Meiburg, (Eds.), ESAIM: Proceedings: Vortex Flows and Related Numerical Methods II, 1996, pp. 307-323.; D. Shiels, A. Leonard, A. Stagg, Computational investigation of drag reduction on a rotationally oscillating cylinder, in: Yves Gagnon, Georges-Henri Cottet, David G. Dritschel, Ahmed F. Ghoniem, Eckart Meiburg, (Eds.), ESAIM: Proceedings: Vortex Flows and Related Numerical Methods II, 1996, pp. 307-323. · Zbl 0875.76415
[45] Sulsky, Deborah; Zhou, Shi-Jian; Schreyer, Howard L., Application of a particle-in-cell method to solid mechanics, Comput. Phys. Commun., 87, 236-252 (1995) · Zbl 0918.73334
[46] Swegle, J. W.; Hicks, D. L.; Attaway, S. W., Smoothed particle hydrodynamics stability analysis, J. Comput. Phys., 116, 1, 123-134 (1995) · Zbl 0818.76071
[47] Szekely, G.; Bajka, M.; Brechbuhler, C. H.; Dual, J.; Enzeler, R.; Haller, U.; Hug, J.; Hutter, R.; Ionmenger, N.; Kauer, M.; Meier, P.; Niederer, P.; Trister, G., Virtual reality based simulation of endoscopic surgery, Presence, 9, 3, 310-333 (2000)
[48] Szekely, G.; Satava, R. M., Virtual reality in medicine, Brit. Med. J., 319, 1305-1315 (1999)
[49] D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, Elastically deformable models, in: ACM SIGGRAPH Computer Graphics, 1987, pp. 205-214.; D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, Elastically deformable models, in: ACM SIGGRAPH Computer Graphics, 1987, pp. 205-214.
[50] Terzopoulous, D.; Fleischer, K., Deformable models, Visual Comput., 4, 306-331 (1988)
[51] M. Teschner, B. Heidelberger, M. Muller, M. Gross, A versatile and robust model for geometrically complex deformable solids, in: Proceedings of Computer Graphics International, 2004, pp. 312-319.; M. Teschner, B. Heidelberger, M. Muller, M. Gross, A versatile and robust model for geometrically complex deformable solids, in: Proceedings of Computer Graphics International, 2004, pp. 312-319.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.