×

Progress in the theory of singular Riemannian foliations. (English) Zbl 1279.53027

Summary: A singular foliation is called a singular Riemannian foliation (SRF) if every geodesic that is perpendicular to one leaf is perpendicular to every leaf it meets. A typical example is the partition of a complete Riemannian manifold into orbits of an isometric action.
In this survey, we provide an introduction to the theory of SRFs, leading from the foundations to recent developments. Sketches of proofs are included and useful techniques are emphasized. We study the local structure of SRFs in general and under curvature conditions in particular. We also review the solution of the Palais-Terng problem on integrability of the horizontal distribution. Important special classes of SRFs, like polar and variationally complete foliations and their relations, are treated. A characterization of SRFs whose leaf space is an orbifold is given. Moreover, desingularizations of SRFs are studied and applications, e.g., to Molino’s conjecture, are presented.

MSC:

53C12 Foliations (differential geometric aspects)
57R30 Foliations in differential topology; geometric theory

References:

[1] Alexandrino, M. M., Integrable Riemannian submersion with singularities, Geom. Dedicata, 108, 141-152 (2004) · Zbl 1067.53012
[2] Alexandrino, M. M., Singular Riemannian foliations with sections, Illinois J. Math., 48, 4, 1163-1182 (2004) · Zbl 1069.53030
[3] Alexandrino, M. M., Proofs of conjectures about singular Riemannian foliations, Geom. Dedicata, 119, 219-234 (2006) · Zbl 1104.53022
[4] Alexandrino, M. M., Singular holonomy of singular Riemannian foliations with sections, Workshop on Differential Geometry. Workshop on Differential Geometry, Mat. Contemp., 33, 23-54 (2007) · Zbl 1160.53011
[5] Alexandrino, M. M., Desingularization of singular Riemannian foliation, Geom. Dedicata, 149, 397-416 (2010) · Zbl 1223.53020
[6] Alexandrino, M. M., Polar foliations and isoparametric maps, Ann. Global Anal. Geom., 41, 2, 187-198 (2012) · Zbl 1242.53030
[7] Alexandrino, M. M., On polar foliations and fundamental group, Results Math., 60, 1-4, 213-223 (2011) · Zbl 1257.53044
[8] Alexandrino, M. M.; Gorodski, C., Singular Riemannian foliations with sections, transnormal maps and basic forms, Ann. Global Anal. Geom., 32, 3, 209-223 (2007) · Zbl 1125.53019
[9] Alexandrino, M. M.; Lytchak, A., On smoothness of isometries between orbit spaces (2011), preprint · Zbl 1261.53029
[10] Alexandrino, M. M.; Radeschi, Marco, Isometries between leaf spaces (2011), preprint · Zbl 1317.53036
[11] Alexandrino, M. M.; Töben, D., Singular Riemannian foliations on simply connected spaces, Differential Geom. Appl., 24, 4, 383-397 (2006) · Zbl 1099.53023
[12] Alexandrino, M. M.; Töben, D., Equifocality of singular Riemannian foliations, Proc. Amer. Math. Soc., 136, 9, 3271-3280 (2008) · Zbl 1158.53016
[13] Berndt, J.; Console, S.; Olmos, C., Submanifolds and Holonomy, Chapman and Hall/CRC Research Notes in Mathematics, vol. 434 (2003), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton, FL · Zbl 1043.53044
[14] Berndt, J.; Tamaru, H., Cohomogeneity one actions on noncompact symmetric spaces with a totally geodesic singular orbit, Tohoku Math. J. (2), 56, 2, 163-177 (2004) · Zbl 1066.53097
[15] Berndt, J.; Díaz-Ramos, J. C.; Tamaru, H., Hyperpolar homogeneous foliations on symmetric spaces of noncompact type, J. Differential Geom., 86, 2, 191-235 (2010) · Zbl 1218.53030
[16] Bott, R., An application of the Morse theory to the topology of Lie-groups, Bull. Soc. Math. France, 84, 251-281 (1956) · Zbl 0073.40001
[17] Bott, R.; Samelson, H., Applications of the theory of Morse to symmetric spaces, Amer. J. Math.. Amer. J. Math., Amer. J. Math., 83, 207-208 (1961), Correction:
[18] Boualem, H., Feuilletages riemannienes singuliers transversalement integrables, Compos. Math., 95, 1, 101-125 (1995) · Zbl 0854.53031
[21] Carter, S.; West, A., Generalised Cartan polynomials, J. Lond. Math. Soc. (2), 32, 2, 305-316 (1985) · Zbl 0554.53041
[22] Conlon, L., Variational completeness and \(K\)-transversal domains, J. Diff. Geom., 5, 135-147 (1971) · Zbl 0213.48602
[23] Conlon, L., A class of variationally complete representations, J. Diff. Geom., 7, 149-160 (1972) · Zbl 0276.53038
[24] Dadok, J., Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc., 288, 125-154 (1985) · Zbl 0565.22010
[25] Duistermaat, J. J.; Kolk, J. A.C., Lie Groups, Universitext (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0955.22001
[26] Ferus, D.; Karcher, H.; Münzner, H. F., Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z., 177, 4, 479-502 (1981) · Zbl 0443.53037
[27] Gorodski, C.; Thorbergsson, G., Variationally complete actions on compact symmetric spaces, J. Diff. Geom., 62, 1, 39-48 (2002) · Zbl 1071.53528
[28] Grove, K.; Gromoll, D., The low-dimensional metric foliations of Euclidean spheres, J. Diff. Geom., 28, 1, 143-156 (1988) · Zbl 0683.53030
[29] Gromoll, D.; Walschap, G., Metric Foliations and Curvature, Progress in Mathematics, vol. 268 (2009), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1163.53001
[30] Heintze, E.; Liu, X.; Olmos, C., Isoparametric submanifolds and a Chevalley-type restriction theorem, (Integrable Systems, Geometry, and Topology. Integrable Systems, Geometry, and Topology, AMS/IP Stud. Adv. Math., vol. 36 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 151-190 · Zbl 1104.53052
[31] Kollross, A., A classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc., 354, 571-612 (2002) · Zbl 1042.53034
[32] Kollross, A.; Lytchak, A., Polar actions on symmetric spaces of higher rank, preprint · Zbl 1276.53061
[34] Lytchak, A., Geometric resolution of singular Riemannian foliations, Geom. Dedicata, 149, 379-395 (2010) · Zbl 1207.53035
[35] Lytchak, A.; Thorbergsson, G., Curvature explosion in quotients and applications, J. Diff. Geom., 85, 1, 117-139 (2010) · Zbl 1221.53067
[36] Lytchak, A.; Thorbergsson, G., Variationally complete actions on nonnegatively curved manifolds, Illinois J. Math., 51, 2, 605-615 (2007) · Zbl 1133.53019
[37] Molino, P., Riemannian Foliations, Progress in Mathematics, vol. 73 (1988), Birkhäuser, Boston, Inc.: Birkhäuser, Boston, Inc. Boston, MA · Zbl 0633.53001
[38] Molino, P.; Pierrot, M., Théorèmes de slice et holonomie des feuilletages Riemanniens singuliers, Ann. Inst. Fourier (Grenoble), 37, 4, 207-223 (1987) · Zbl 0625.57016
[39] OʼNeill, B., The fundamental equations of a submersion, Michigan Math. J., 13, 459-469 (1966) · Zbl 0145.18602
[40] Palais, R. S.; Terng, C.-L., Critical Point Theory and Submanifold Geometry, Lectures Notes in Mathematics, vol. 1353 (1988), Springer-Verlag: Springer-Verlag Berlin · Zbl 0658.49001
[41] Petersen, P., Riemannian Geometry, Graduate Texts in Mathematics, vol. 171 (2006), Springer: Springer New York · Zbl 1220.53002
[42] Podestà, F.; Thorbergsson, G., Polar actions on rank-one symmetric spaces, J. Diff. Geom., 53, 1, 131-175 (1999) · Zbl 1040.53071
[43] Radeschi, M., Low dimensional singular Riemannian foliations in spheres (2012), preprint
[44] Schwarz, G. W., Smooth functions invariant under the action of a compact Lie group, Topology, 14, 63-68 (1975) · Zbl 0297.57015
[45] Schwarz, G. W., Lifting smooth homotopies of orbit spaces, Publ. Math. IHÉS, 51, 37-135 (1980) · Zbl 0449.57009
[46] Szenthe, J., Orthogonally transversal submanifolds and the generalizations of the Weyl group, Period. Math. Hungar., 15, 4, 281-299 (1984) · Zbl 0583.53035
[47] Terng, C. L., Isoparametric submanifolds and their Coxeter groups, J. Diff. Geom., 21, 79-107 (1985) · Zbl 0615.53047
[48] Terng, C. L.; Thorbergsson, G., Submanifold geometry in symmetric spaces, J. Diff. Geom., 42, 665-718 (1995) · Zbl 0845.53040
[49] Thorbergsson, G., Isoparametric foliations and their buildings, Ann. of Math. (2), 133, 429-446 (1991) · Zbl 0727.57028
[50] Thorbergsson, G., A survey on isoparametric hypersurfaces and their generalizations, (Handbook of Differential Geometry, vol. 1 (2000), Elsevier Science) · Zbl 0979.53002
[51] Thorbergsson, G., Transformation groups and submanifold geometry, Rend. Mat. Ser. VII, 25, 1-16 (2005) · Zbl 1082.53058
[52] Thorbergsson, G., Singular Riemannian foliations and isoparametric submanifolds, Milan J. Math., 78, 355-370 (2010) · Zbl 1205.53040
[53] Töben, D., Parallel focal structure and singular Riemannian foliations, Trans. Amer. Math. Soc., 358, 4, 1677-1704 (2006) · Zbl 1085.53021
[54] Töben, D., Singular Riemannian foliations on nonpositively curved manifolds, Math. Z., 255, 427-436 (2007) · Zbl 1188.53022
[55] Wang, Q. M., Isoparametric functions on Riemannian manifolds I, Math. Ann., 277, 639-646 (1987) · Zbl 0638.53053
[56] Wiesendorf, S., Taut submanifolds and foliations (2012) · Zbl 1296.53012
[57] Wilking, B., A duality theorem for Riemannian foliations in nonnegative sectional curvature, Geom. Funct. Anal., 17, 4, 1297-1320 (2007) · Zbl 1139.53014
[58] Zeghib, A., Subsystems of Anosov systems, Amer. J. Math., 117, 1431-1448 (1995) · Zbl 0843.58104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.