×

An improved test selection optimization model based on fault ambiguity group isolation and chaotic discrete PSO. (English) Zbl 1390.93881

Summary: Sensor data-based test selection optimization is the basis for designing a test work, which ensures that the system is tested under the constraint of the conventional indexes such as Fault Detection Rate (FDR) and Fault Isolation Rate (FIR). From the perspective of equipment maintenance support, the ambiguity isolation has a significant effect on the result of test selection. In this paper, an improved test selection optimization model is proposed by considering the ambiguity degree of fault isolation. In the new model, the fault test dependency matrix is adopted to model the correlation between the system fault and the test group. The objective function of the proposed model is minimizing the test cost with the constraint of FDR and FIR. The improved chaotic discrete particle swarm optimization (PSO) algorithm is adopted to solve the improved test selection optimization model. The new test selection optimization model is more consistent with real complicated engineering systems. The experimental result verifies the effectiveness of the proposed method.

MSC:

93E25 Computational methods in stochastic control (MSC2010)
62N03 Testing in survival analysis and censored data
93B35 Sensitivity (robustness)

References:

[1] Falcoz, A.; Henry, D.; Zolghadri, A., Robust fault diagnosis for atmospheric reentry vehicles: a case study, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 40, 5, 886-899, (2010) · doi:10.1109/tsmca.2010.2063022
[2] Joshi, P.; Imadabathuni, M.; He, D.; Al-Kateb, M.; Bechhoefer, E., Application of the Condition Based Maintenance checking system for aircrafts, Journal of Intelligent Manufacturing, 23, 2, 277-288, (2012) · doi:10.1007/s10845-009-0350-2
[3] Paté-Cornell, M. E., Organizational aspects of engineering system safety: The case of offshore platforms, Science, 250, 4985, 1210-1217, (1990) · doi:10.1126/science.250.4985.1210
[4] Yang, S.-M.; Qiu, J.; Liu, G.-J.; Yang, P., Sensor selection and optimization for aerospace system health management under uncertainty testing, Transactions of the Japan Society for Aeronautical and Space Sciences, 56, 4, 187-196, (2013) · doi:10.2322/tjsass.56.187
[5] Hwang, I.; Kim, S.; Kim, Y.; Seah, C. E., A survey of fault detection, isolation, and reconfiguration methods, IEEE Transactions on Control Systems Technology, 18, 3, 636-653, (2010) · doi:10.1109/TCST.2009.2026285
[6] Hyafil, L.; Rivest, R. L., Constructing optimal binary decision trees is NP-complete, Information Processing Letters, 5, 1, 15-17, (1976) · Zbl 0333.68029 · doi:10.1016/0020-0190(76)90095-8
[7] Johnson, R. A., An information theory approach to diagnosis, IRE Transactions on Reliability and Quality Control, 9, 1, 35, (1960) · doi:10.1109/ire-pgrqc.1960.5007263
[8] Pattipati, K. R.; Alexandridis, M. G., Application of Heuristic Search and Information Theory to Sequential Fault Diagnosis, IEEE Transactions on Systems, Man, and Cybernetics, 20, 4, 872-887, (1990) · Zbl 0709.68006 · doi:10.1109/21.105086
[9] Raghavan, V.; Shakeri, M.; Pattipati, K., Test sequencing algorithms with unreliable tests, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 29, 4, 347-357, (1999) · doi:10.1109/3468.769753
[10] Yang, C.; Su, R.; Long, B., Methods of sequential test optimization in dynamic environment, Microelectronics Reliability, 70, 112-121, (2017) · doi:10.1016/j.microrel.2016.12.017
[11] Yang, C.; Yan, J.; Long, B.; Liu, Z., A novel test optimizing algorithm for sequential fault diagnosis, Microelectronics Journal, 45, 6, 719-727, (2014) · doi:10.1016/j.mejo.2014.03.005
[12] Jones, D. F.; Mirrazavi, S. K.; Tamiz, M., Multi-objective meta-heuristics: an overview of the current state-of-the-art, European Journal of Operational Research, 137, 1, 1-9, (2002) · Zbl 1002.90060 · doi:10.1016/S0377-2217(01)00123-0
[13] Long, Q.; Wu, C. Z.; Huang, T. W.; Wang, X. Y., A genetic algorithm for unconstrained multi-objective optimization, Swarm and Evolutionary Computation, (2015) · doi:10.1016/j.swevo.2015.01.002
[14] Ferrer, J.; Chicano, F.; Alba, E., Evolutionary algorithms for the multi-objective test data generation problem, Software: Practice and Experience, 42, 11, 1331-1362, (2012) · doi:10.1002/spe.1135
[15] Deng, S.; Jing, B.; Zhou, H., Heuristic particle swarm optimization approach for test point selection with imperfect test, Journal of Intelligent Manufacturing, 28, 1, 37-50, (2017) · doi:10.1007/s10845-014-0960-1
[16] Zhang, Y.; Wang, S.; Phillips, P.; Ji, G., Binary PSO with mutation operator for feature selection using decision tree applied to spam detection, Knowledge-Based Systems, 64, 22-31, (2014) · doi:10.1016/j.knosys.2014.03.015
[17] Jiang, R.; Wang, H.; Tian, S.; Long, B., Multidimensional fitness function DPSO algorithm for analog test point selection, IEEE Transactions on Instrumentation and Measurement, 59, 6, 1634-1641, (2010) · doi:10.1109/TIM.2009.2021643
[18] Hu, W.; Yen, G. G., Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system, IEEE Transactions on Evolutionary Computation, 19, 1, 1-18, (2015) · doi:10.1109/TEVC.2013.2296151
[19] Chen, X. Y.; Chau, K. W.; Busari, A. O., A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model, Engineering Applications of Artificial Intelligence, 46, 258-268, (2015) · doi:10.1016/j.engappai.2015.09.010
[20] Lei, H.; Qin, K., Optimal test selection based on improved quantum-inspired evolutionary algorithm, Chinese Journal of Scientific Instrument, 34, 4, 838-844, (2013)
[21] Chen, X.; Qiu, J.; Liu, G., Optimal test selection based on hybrid BPSO and GA, Chinese Journal of Scientific Instrument, 30, 8, 1674-1680, (2009)
[22] Balazs, K.; Koczy, L. T., Hierarchical-interpolative fuzzy system construction by genetic and bacterial memetic programming approaches, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 20, 105-131, (2012)
[23] Balazs, K.; Koczy, L. T., Constructing dense, sparse, and hierarchical fuzzy systems by applying evolutionary optimization techniques, Applied And Computational Mathematics, 11, 81-101, (2012) · Zbl 1284.68489
[24] Azizi, A., Introducing a novel hybrid artificial intelligence algorithm to optimize network of industrial applications in modern manufacturing, Complexity, 2017, (2017) · doi:10.1155/2017/8728209
[25] Papageorgiou, E. I.; Hatwágner, M. F.; Buruzs, A.; Kóczy, L. T., A concept reduction approach for fuzzy cognitive map models in decision making and management, Neurocomputing, 232, 16-33, (2017) · doi:10.1016/j.neucom.2016.11.060
[26] Zhang, X.; Mahadevan, S., A bio-inspired approach to traffic network equilibrium assignment problem, IEEE Transactions on Cybernetics, (2017) · doi:10.1109/TCYB.2017.2691666
[27] Deng, Y.; Mahadevan, S.; Zhou, D., Vulnerability assessment of physical protection systems: a bio-inspired approach, International Journal of Unconventional Computing, 11, 3-4, 227-243, (2015)
[28] Zhang, X.; Adamatzky, A.; Chan, F. T.; Mahadevan, S.; Deng, Y., Physarum solver: a bio-inspired method for sustainable supply chain network design problem, Annals of Operations Research, 254, 1-2, 533-552, (2017) · Zbl 1369.90164 · doi:10.1007/s10479-017-2410-x
[29] Jung, H.-Y.; Yoon, J. H.; Choi, S. H., Fuzzy linear regression using rank transform method, Fuzzy Sets and Systems, 274, 97-108, (2015) · Zbl 06805471 · doi:10.1016/j.fss.2014.11.004
[30] Namdari, M.; Yoon, J. H.; Abadi, A.; Taheri, S. M.; Choi, S. H., Fuzzy logistic regression with least absolute deviations estimators, Soft Computing, 19, 4, 909-917, (2015) · doi:10.1007/s00500-014-1418-2
[31] Lee, W.-J.; Jung, H. Y.; Yoon, J. H.; Choi, S. H., The statistical inferences of fuzzy regression based on bootstrap techniques, Soft Computing, 19, 4, 883-890, (2015) · Zbl 1349.62342 · doi:10.1007/s00500-014-1415-5
[32] Liu, Z.-G.; Pan, Q.; Dezert, J.; Martin, A., Adaptive imputation of missing values for incomplete pattern classification, Pattern Recognition, 52, 85-95, (2016) · doi:10.1016/j.patcog.2015.10.001
[33] Jirousek, R.; Shenoy, P. P., Compositional models in valuation-based systems, International Journal of Approximate Reasoning, 55, 1, part 3, 277-293, (2014) · Zbl 1316.68180 · doi:10.1016/j.ijar.2013.02.002
[34] Zhou, K.; Martin, A.; Pan, Q.; Liu, Z.-G., ECMdd: Evidential c-medoids clustering with multiple prototypes, Pattern Recognition, 60, 239-257, (2016) · doi:10.1016/j.patcog.2016.05.005
[35] Yildiz, A. R., A novel particle swarm optimization approach for product design and manufacturing, The International Journal of Advanced Manufacturing Technology, 40, 5-6, 617-628, (2009) · doi:10.1007/s00170-008-1453-1
[36] Yildiz, A. R.; Solanki, K. N., Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach, The International Journal of Advanced Manufacturing Technology, 59, 1–4, 367-376, (2012) · doi:10.1007/s00170-011-3496-y
[37] Abedinia, O.; Ghasemi, A.; Ojaroudi, N., Improved time varying inertia weight PSO for solved economic load dispatch with subsidies and wind power effects, Complexity, 21, 4, 40-49, (2016) · doi:10.1002/cplx.21619
[38] Yildiz, B. S., A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems, International Journal of Vehicle Design, 73, 1, 208-218, (2017) · doi:10.1504/IJVD.2017.082603
[39] Balazs, K.; Horvath, Z.; Koczy, L. T., Different Chromosome-based Evolutionary Approaches for the Permutation Flow Shop Problem, Acta Polytechnica Hungarica, 9, 115-138, (2012)
[40] Zhang, X.; Chan, F. T. S.; Adamatzky, A.; Mahadevan, S.; Yang, H.; Zhang, Z.; Deng, Y., An intelligent physarum solver for supply chain network design under profit maximization and oligopolistic competition, International Journal of Production Research, 55, 1, 244-263, (2017) · doi:10.1080/00207543.2016.1203075
[41] Tang, Y.; Zhou, D.; Xu, S., An improved physarum solver for supply chain network with fuzzy numbers, International Journal of Unconventional Computing, 13, 2, 161-184, (2017)
[42] Kóczy, L. T.; Földesi, P.; Tüű-Szabó, B., An effective Discrete Bacterial Memetic Evolutionary Algorithm for the Traveling Salesman Problem, International Journal of Intelligent Systems, 32, 8, 862-876, (2017) · doi:10.1002/int.21893
[43] Bereta, M.; Pedrycz, W.; Reformat, M., Analysis and design of rank-based classifiers, Expert Systems with Applications, 40, 8, 3256-3265, (2013) · doi:10.1016/j.eswa.2012.12.038
[44] Medina, J., Minimal solutions of generalized fuzzy relational equations: clarifications and corrections towards a more flexible setting, International Journal of Approximate Reasoning, 84, 33-38, (2017) · Zbl 1422.03119 · doi:10.1016/j.ijar.2017.02.002
[45] Bereta, M.; Karczmarek, P.; Pedrycz, W.; Reformat, M., Local descriptors in application to the aging problem in face recognition, Pattern Recognition, 46, 10, 2634-2646, (2013) · doi:10.1016/j.patcog.2013.03.010
[46] Karczmarek, P.; Pedrycz, W.; Reformat, M.; Akhoundi, E., A study in facial regions saliency: A fuzzy measure approach, Soft Computing, 18, 2, 379-391, (2014) · doi:10.1007/s00500-013-1064-0
[47] Ghadimi, N., A new hybrid algorithm based on optimal fuzzy controller in multimachine power system, Complexity, 21, 1, 78-93, (2015) · doi:10.1002/cplx.21544
[48] Yildiz, A. R., A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226, 10, 1340-1351, (2012) · doi:10.1177/0954407012443636
[49] Azadeh, A.; Pourmohammad Zia, N.; Saberi, M.; Khadeer Hussain, F.; Yoon, J. H.; Khadeer Hussain, O.; Sadri, S., A trust-based performance measurement modeling using t-norm and t-conorm operators, Applied Soft Computing, 30, 491-500, (2015) · doi:10.1016/j.asoc.2015.01.015
[50] Julián-Iranzo, P.; Medina, J.; Ojeda-Aciego, M., On reductants in the framework of multi-adjoint logic programming, Fuzzy Sets and Systems, 317, 27-43, (2017) · Zbl 1392.68137 · doi:10.1016/j.fss.2016.09.004
[51] Kim, J. H.; Wong, K.; Athanasopoulos, G.; Liu, S., Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals, International Journal of Forecasting, 27, 3, 887-901, (2011) · doi:10.1016/j.ijforecast.2010.02.014
[52] Rai, S.; Wong, K.; Prakash.; E., The use of interactive simulations to affect driving behaviour, Proceedings of the 3rd Annual International Conference on Computer Games Multimedia and Allied Technologies (CGAT), Global Science & Technology Forum
[53] Tian, M.; Gao, X.; Dai, C., Differential evolution with improved individual-based parameter setting and selection strategy, Applied Soft Computing, 56, 286-297, (2017) · doi:10.1016/j.asoc.2017.03.010
[54] Ouyang, H.-T., Multi-objective optimization of typhoon inundation forecast models with cross-site structures for a water-level gauging network by integrating ARMAX with a genetic algorithm, Natural Hazards and Earth System Sciences, 16, 8, 1897-1909, (2016) · doi:10.5194/nhess-16-1897-2016
[55] Mahesh, K.; Nallagownden, P.; Elamvazuthi, I., Advanced Pareto front non-dominated sorting multi-objective particle swarm optimization for optimal placement and sizing of distributed generation, Energies, 9, 12, article no. 982, (2016) · doi:10.3390/en9120982
[56] Yuan, Y.; Xu, H.; Wang, B.; Yao, X., A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization, IEEE Transactions on Evolutionary Computation, 20, 1, 16-37, (2016) · doi:10.1109/TEVC.2015.2420112
[57] Islam, S. M.; Das, S.; Ghosh, S.; Roy, S.; Suganthan, P. N., An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42, 2, 482-500, (2012) · doi:10.1109/TSMCB.2011.2167966
[58] Mirjalili, S.; Mirjalili, S. M.; Hatamlou, A., Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Computing and Applications, 27, 495-513, (2016) · doi:10.1007/s00521-015-1870-7
[59] Shi, J.-Y.; Chen, L.; Cui, W.-W., A new hybrid fault diagnostic method for combining dependency matrix diagnosis and fuzzy diagnosis based on an enhanced inference operator, Circuits, Systems and Signal Processing, 35, 1, 1-28, (2016) · doi:10.1007/s00034-015-0047-z
[60] Cui, Y.; Shi, J.; Wang, Z., An analytical model of electronic fault diagnosis on extension of the dependency theory, Reliability Engineering & System Safety, 133, 192-202, (2015) · doi:10.1016/j.ress.2014.09.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.