×

Numerical study of the effect of blockage ratio on the flow past one and two cylinders in tandem for different power-law fluids. (English) Zbl 1481.76082

Summary: In this work, the rheological behavior of power-law fluids on the flow dynamics is studied numerically. Studied cases include confined and non-confined problems that involve a single and two cylinders in tandem for 2-D and 3-D. For 2-D cases, the critical Reynolds numbers that define the Hopf bifurcation and its relation between the blockage ratio and the nature of the fluid are analyzed, including a complete CFD analysis. Results show that the blockage ratio, the addition of a second cylinder, and the rheological properties directly influence the flow’s behavior. In this respect, the critical Reynolds number decreases by decreasing the power-law index and increasing the blockage ratio using shear-thinning fluids, and by increasing the power-law index in unconfined cases of shear-thickening fluids. For the 3-D case, different fluids are compared for a fixed Reynolds number and blockage ratio, proving that pseudoplastic fluids increase mixing capacity.

MSC:

76D25 Wakes and jets
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q35 PDEs in connection with fluid mechanics
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
Full Text: DOI

References:

[1] kumar, R. S.; Jayavel, S., Influence of flow shedding frequency on convection heat transfer from bank of circular tubes in heat exchangers under cross flow, Int. J. Heat Mass Transf., 105, 376-393 (2017)
[2] 011007
[3] Mohapatra, P. K., Flow past a horizontal cylinder (2016), Indian Institute of Technology Gandhinagar, Ph.D. thesis
[4] H. Jasak, V. Vukčević, I. Gatin, Numerical Simulation of Wave Loading on Static Offshore Structures, Springer International Publishing, Cham, pp. 95-105. 10.1007/978-3-319-16202-7_9 · Zbl 1390.76529
[5] Savvas, T.; Markatos, N.; Papaspyrides, C., On the flow of non-newtonian polymer solutions, Appl. Math. Model., 18, 1, 14-22 (1994) · Zbl 0800.76039
[6] Rao, M. A., Rheology of liquid foods - a review, J. Texture Stud., 8, 2, 135-168 (1977)
[7] Cruchaga, M.; Celentano, D.; Lewis, R., Modelling of twin-roll strip casting processes, Commun. Numer. Methods Eng., 19, 8, 623-635 (2003) · Zbl 1098.76567
[8] Yilmaz, F.; Gundogdu, M. Y., A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea-Aust. Rheol. J., 20, 4, 197-211 (2008)
[9] Hussain, M. A.; Kar, S.; Puniyani, R. R., Relationship between power-law coefficients and major blood constituents affecting the whole blood viscosity, J. Biosci., 24, 3, 329-337 (1999)
[10] Abugattas, C.; Aguirre, A.; Castillo, E.; Cruchaga, M., Numerical study of bifurcation blood flows using three different non-newtonian constitutive models, Appl. Math. Model. (2020) · Zbl 1481.76295
[11] Chen, J.-H.; Pritchard, W. G.; Tavener, S. J., Bifurcation for flow past a cylinder between parallel planes, J. Fluid Mech., 284, 23-41 (1995) · Zbl 0842.76015
[12] Sumner, D., Two circular cylinders in cross-flow: a review, J. Fluids Struct., 26, 6, 849-899 (2010)
[13] Zhou, Y.; Alam, M. M., Wake of two interacting circular cylinders: a review, Int. J. Heat Fluid Flow, 62, 510-537 (2016)
[14] Gao, B.; Bi, Q.; Nie, Z.; Wu, J., Experimental study of effects of baffle helix angle on shell-side performance of shell-and-tube heat exchangers with discontinuous helical baffles, Exp. Therm. Fluid Sci., 68, 48-57 (2015)
[15] Tahery, A. A.; Khalilarya, S.; Jafarmadar, S., Effectively designed NTW shell-tube heat exchangers with segmental baffles using flow hydraulic network method, Appl. Therm. Eng., 120, 635-644 (2017)
[16] Mittal, S.; Kottaram, J. J.; Kumar, B., Onset of shear layer instability in flow past a cylinder, Phys. Fluids, 20, 5, 1-11 (2008) · Zbl 1182.76524
[17] Zdravkovich, M. M., The effects of interference between circular cylinders in cross-Flow, J. Fluids Struct., 1, 2, 239-261 (1987)
[18] Carmo, B. S.; Meneghini, J. R.; Sherwin, S. J., Possible states in the flow around two circular cylinders in tandem with separations in the vicinity of the drag inversion spacing, Phys. Fluids, 22, 5, 1-7 (2010) · Zbl 1190.76019
[19] Mizushima, J.; Suehiro, N., Instability and transition of flow past two tandem circular cylinders, Phys. Fluids, 17, 10 (2005) · Zbl 1188.76103
[20] Igarashi, T., Characteristics of the flow around two circular cylinders arranged in tandem : 1st report, Bull. JSME, 24, 188, 323-331 (2011)
[21] Patnana, V. K.; Bharti, R. P.; Chhabra, R. P., Two-dimensional unsteady flow of power-law fluids over a cylinder, Chem. Eng. Sci., 64, 12, 2978-2999 (2009)
[22] Sivakumar, P.; Bharti, R. P.; Chhabra, R. P., Effect of power-law index on critical parameters for power-law flow across an unconfined circular cylinder, Chem. Eng. Sci., 61, 18, 6035-6046 (2006)
[23] Citro, V.; Giannetti, F.; Pralits, J. O., Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities, Fluid Dyn. Res., 47, 1, 1-14 (2015)
[24] Giannetti, F.; Luchini, P., Structural sensitivity of the first instability of the cylinder wake, J. Fluid Mech., 581, 167-197 (2007) · Zbl 1115.76028
[25] Anagnostopoulos, P.; Iliadis, G.; Richardson, S., Numerical study of the blockage effects on viscous flow past a circular cylinder, Int. J. Numer. Methods Fluids, 22, 11, 1061-1074 (1996) · Zbl 0871.76039
[26] Cliffe, K. A.; Tavener, S. J., The effect of cylinder rotation and blockage ratio on the onset of periodic flows, J. Fluid Mech., 501, 501, 125-133 (2004) · Zbl 1051.76024
[27] Sojoudi, A.; Saha, S. C., Shear thinning and shear thickening non-newtonian confined fluid flow over rotating cylinder, Am. J. Fluid Dyn., 2, 6, 117-121 (2012)
[28] Champmartin, S.; Ambari, A.; Roussel, N., Flow around a confined rotating cylinder at small Reynolds number, Phys. Fluids, 19, 10, 103101 (2007) · Zbl 1182.76137
[29] 081202
[30] Gonzlez, F. A.; Bustamante, J. A.; Cruchaga, M. A.; Celentano, D. J., Numerical study of flow past oscillatory square cylinders at low Reynolds number, Eur. J. Mech. B. Fluids, 75, 286-299 (2019) · Zbl 1408.76366
[31] Pralits, J. O.; Brandt, L.; Giannetti, F., Instability and sensitivity of the flow around a rotating circular cylinder, J. Fluid Mech., 650, 2010, 513-536 (2010) · Zbl 1189.76216
[32] Sahin, M.; Owens, R. G., A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder, Physics of Fluids, 16, 5, 1305-1320 (2004) · Zbl 1186.76455
[33] Bharti, R. P.; Chhabra, R. P.; Eswaran, V., Two-dimensional steady poiseuille flow of power-law fluids across a circular cylinder in a plane confined channel: wall effects and drag coefficients, Ind. Eng. Chem. Res., 46, 11, 3820-3840 (2007)
[34] Bijjam, S.; Dhiman, A. K., CFD Analysis of two-dimensional non-newtonian power-law flow across a circular cylinder confined in a channel, Chem. Eng. Commun., 199, 6, 767-785 (2012)
[35] Rao, M. K.; Sahu, A. K.; Chhabra, R. P., Effect of confinement on power-law fluid flow past a circular cylinder, Polym. Eng. Sci., 51, 10, 2044-2065 (2011)
[36] Nejat, A.; Abdollahi, V.; Vahidkhah, K., Lattice Boltzmann simulation of non-Newtonian flows past confined cylinders, J. Nonnewton Fluid Mech., 166, 12-13, 689-697 (2011) · Zbl 1282.76037
[37] Carini, M.; Giannetti, F.; Auteri, F., On the origin of the flip-flop instability of two side-by-side cylinder wakes, J. Fluid Mech., 742, 552-576 (2014)
[38] Lashgari, I.; Pralits, J. O.; Giannetti, F.; Brandt, L., First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder, J. Fluid Mech., 701, 201-227 (2012) · Zbl 1248.76061
[39] 060802
[40] Aguirre, A.; Castillo, E.; Cruchaga, M.; Codina, R.; Baiges, J., Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high reynolds numbers using a stabilized finite element formulation of the VMS type, J. Nonnewton Fluid Mech., 257, 22-43 (2018)
[41] Aguirre, A.; Castillo, E.; Cruchaga, M.; Codina, R.; Baiges, J., Pseudoplastic fluid flows for different Prandtl numbers: steady and time-dependent solutions, Int. J. Therm. Sci., 145, 106022 (2019)
[42] Garcia, S., Hopf bifurcations, drops in the lid-driven square cavity flow, Adv. Appl. Math. Mech., 1, 4, 546-572 (2009)
[43] Girault, V.; Raviart, P.-A., Finite Element Methods for the Navier-Stokes Equations: Theory and Algorithms (1986), Springer-Verlag Berlin Heidelberg · Zbl 0585.65077
[44] Castillo, E.; Codina, R., Dynamic term-by-term stabilized finite element formulation using orthogonal subgrid-scales for the incompressible Navier Stokes problem, Comput. Methods Appl. Mech. Eng., 349, 701-721 (2019) · Zbl 1441.76056
[45] González, A.; Castillo, E.; Cruchaga, M., Numerical verification of a non-residual orthogonal term-by-term stabilized finite element formulation for incompressible convective flow problems, Comput. Math. Appl., 80, 5, 1009-1028 (2020) · Zbl 1447.65073
[46] Codina, R.; Badia, S.; Baiges, J.; Principe, J., Variational multiscale methods in computational fluid dynamics (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.