×

Numerical study of bifurcation blood flows using three different non-Newtonian constitutive models. (English) Zbl 1481.76295

Summary: In this work, a variational multiscale finite element formulation is used to study bifurcation flows of non-Newtonian fluids, using a representative simplified Carotid Artery geometry. In particular, the flow pattern and wall shear stress (WSS) computed using power-law, Cross, and Carreau-Yasuda models, are assessed. First, the formulation is validated by contrasting simulations of a benchmark test for bifurcation flows reported in the literature. After that, a study of blood flow through the carotid artery is presented. Hemodynamics conditions aimed to describe the flow behavior from diastole to systole of the cardiac cycle for healthy arteries and two specific conditions (60% carotid stenosis due to atherosclerosis and 20% increased bifurcation angle due to aging), are specifically analyzed. For each condition, the hemodynamics present different velocity fields that lead to distinctive distribution of WSS enable us to classified three regions, depending on their magnitude: low-WSS, medium-WSS and high-WSS. Results show that power-law flows predict lower wall shear stresses, especially in sections where geometry concentrates stresses, compared to those predicted using Cross and Carreau-Yasuda models. Overall, low-WSS are usually present in zones where stenosis develops even in healthy arteries, however, both geometries lead to a decrease of WSS magnitude in low-WSS regions, increasing the risk factor associated with plaque building.

MSC:

76Z05 Physiological flows
76A05 Non-Newtonian fluids
92C35 Physiological flow
Full Text: DOI

References:

[1] Liepsch, D.; Moravec, S.; Rastogi, A.; Vlachos, N., Measurement and calculations of laminar flow in a ninety degree bifurcation, J. Biomech., 15, 7, 473-485 (1982)
[2] Matos, H.; Oliveira, P., Steady and unsteady non-newtonian inelastic flows in a planar t-junction, Int. J. Heat Fluid Flow, 39, 102-126 (2013)
[3] Li, Y.; Zhang, F.; Sunden, B.; Xie, G., Laminar thermal performance of microchannel heat sinks with constructal vertical y shaped bifurcation plates, Appl. Therm. Eng., 73, 1, 185-195 (2014)
[4] Xie, G.; Shen, H.; Wang, C.-C., Parametric study on thermal performance of microchannel heat sinks with internal vertical y-shaped bifurcations, Int. J. Heat Mass Transf., 90, 948-958 (2015)
[5] Bharadvaj, B.; Mabon, R.; Giddens, D., Steady flow in a model of the human carotid bifurcation. part i-flow visualization, J. Biomech., 15, 5, 349-362 (1982)
[6] Delfino, A.; Stergiopulos, N.; Moore, J.; Meister, J.-J., Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation, J. Biomech., 30, 8, 777-786 (1997)
[7] Maurya, A.; Tiwari, N.; Chhabra, R., Effect of inclination angle on the forced convective flow of a power-law fluid in a 2-d planar branching channel, Int. J. Heat Mass Transf., 134, 768-783 (2019)
[8] Wells, D. R.; Archie Jr, J. P.; Kleinstreuer, C., Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients, J. Vasc. Surg., 23, 4, 667-678 (1996)
[9] Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S., Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease, Circ. Res., 118, 4, 535-546 (2016)
[10] Wardlaw, J. M.; Smith, C.; Dichgans, M., Small vessel disease: mechanisms and clinical implications, Lancet Neurol., 18, 7, 684-696 (2019)
[11] Kucharska-Newton, A.; Griswold, M.; Yao, Z. H.; Foraker, R.; Rose, K.; Rosamond, W.; Wagenknecht, L.; Koton, S.; Pompeii, L.; Windham, B. G., Cardiovascular disease and patterns of change in functional status over 15 years: findings from the atherosclerosis risk in communities (ARIC) study, J. Am. Heart Assoc., 6, 3, e004144 (2017)
[12] Levenson, J. W.; Skerrett, P. J.; Gaziano, J. M., Reducing the global burden of cardiovascular disease: the role of risk factors, Prev. Cardiol., 5, 4, 188-199 (2002)
[13] Gaziano, T. A.; Bitton, A.; Anand, S.; Abrahams-Gessel, S.; Murphy, A., Growing epidemic of coronary heart disease in low-and middle-income countries, Curr. Probl. Cardiol., 35, 2, 72-115 (2010)
[14] Ma, S.; Fan, L.; Cao, F., Combating cellular senescence by sirtuins: implications for atherosclerosis, Biochim. Biophys. Acta (BBA) - Mol. Basis Dis., 1865, 7, 1822-1830 (2019)
[15] Chatzizisis, Y. S.; Jonas, M.; Coskun, A. U.; Beigel, R.; Stone, B. V.; Maynard, C.; Gerrity, R. G.; Daley, W.; Rogers, C.; Edelman, E. R.; Feldman, C. L.; Stone, P. H., Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress, Circulation, 117, 8, 993-1002 (2008)
[16] Szajer, J.; Ho-Shon, K., A comparison of 4d flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations-a review, Magn. Reson. Imaging, 48, 62-69 (2018)
[17] Isoda, H.; Ohkura, Y.; Kosugi, T.; Hirano, M.; Takeda, H.; Hiramatsu, H.; Yamashita, S.; Takehara, Y.; Alley, M. T.; Bammer, R., In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI, Neuroradiology, 52, 10, 921-928 (2010)
[18] Yamashita, S.; Isoda, H.; Hirano, M.; Takeda, H.; Inagawa, S.; Takehara, Y.; Alley, M. T.; Markl, M.; Pelc, N. J.; Sakahara, H., Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI, J. Magn. Resonanc. Imaging: Off. J. Int. Soc. Magn. Resonanc. Med., 25, 3, 473-478 (2007)
[19] Cibis, M.; Potters, W. V.; Gijsen, F. J.; Marquering, H.; VanBavel, E.; van der Steen, A. F.; Nederveen, A. J.; Wentzel, J. J., Wall shear stress calculations based on 3d cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries, NMR Biomed., 27, 7, 826-834 (2014)
[20] Cibis, M.; Potters, W. V.; Selwaness, M.; Gijsen, F. J.; Franco, O. H.; Lorza, A. M.A.; de Bruijne, M.; Hofman, A.; van der Lugt, A.; Nederveen, A. J., Relation between wall shear stress and carotid artery wall thickening MRI versus CFD, J. Biomech., 49, 5, 735-741 (2016)
[21] Gharahi, H.; Zambrano, B. A.; Zhu, D. C.; DeMarco, J. K.; Baek, S., Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging, Int. J. Adv. Eng. Sci. Appl. Math., 8, 1, 46-60 (2016) · Zbl 1348.76200
[22] Li, X.; Sun, B.; Suo, S.; Ge, X.; Zhao, H.; Sun, Y.; Xu, J.; Gao, B.; Liu, X., Assessment of hemodynamic parameters distribution in normal carotid artery by using computational fluid dynamics based on CE-MRA data, Biosci. J., 34, 2 (2018)
[23] Moradicheghamahi, J.; Sadeghiseraji, J.; Jahangiri, M., Numerical solution of the pulsatile, non-newtonian and turbulent blood flow in a patient specific elastic carotid artery, Int. J. Mech. Sci., 150, 393-403 (2019)
[24] Gataulin, Y.; Yukhnev, A.; Zaitsev, D.; Smirnov, E.; Kulikov, V.; Kirsanov, R., Structure of the secondary flow in the bifurcation of a blood vessel: patient specific modeling and clinical doppler measurements, J. Phys.: Conf. Ser., 1135, 012089 (2018)
[25] Perktold, K.; Hilbert, D., Numerical simulation of pulsatile flow in a carotid bifurcation model, J. Biomed. Eng., 8, 3, 193-199 (1986)
[26] Perktold, K.; Rappitsch, G., Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model, J. Biomech., 28, 7, 845-856 (1995)
[27] Cebral, J. R.; Castro, M. A.; Burgess, J. E.; Pergolizzi, R. S.; Sheridan, M. J.; Putman, C. M., Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models, Am. J. Neuroradiol., 26, 10, 2550-2559 (2005)
[28] Mut, F.; Aubry, R.; Löhner, R.; Cebral, J. R., Fast numerical solutions of patient-specific blood flows in 3d arterial systems, Int. J. Numer. Method Biomed. Eng., 26, 1, 73-85 (2010) · Zbl 1180.92022
[29] Domanin, M.; Gallo, D.; Vergara, C.; Biondetti, P.; Forzenigo, L. V.; Morbiducci, U., Prediction of long term restenosis risk after surgery in the carotid bifurcation by hemodynamic and geometric analysis, Ann. Biomed. Eng., 1-12 (2019)
[30] Dai, Y.; Lv, P.; Javadzadegan, A.; Tang, X.; Qian, Y.; Lin, J., Hemodynamic analysis of carotid artery after endarterectomy: a preliminary and quantitative imaging study based on computational fluid dynamics and magnetic resonance angiography, Quant. Imaging Med. Surg., 8, 4, 399-409 (2018)
[31] Baskurt, O. K.; Meiselman, H. J., Blood rheology and hemodynamics, Seminars in Thrombosis and Hemostasis, 29, 435-450 (2003)
[32] Numerical Analysis of Fluid Flow and Heat Transfer · Zbl 1276.76098
[33] Liu, Y., A lattice Boltzmann model for blood flows, Appl. Math. Model., 36, 7, 2890-2899 (2012) · Zbl 1252.76068
[34] Anand, M.; Kwack, J.; Masud, A., A new generalized oldroyd-b model for blood flow in complex geometries, Int. J. Eng. Sci., 72, 78-88 (2013) · Zbl 1423.76514
[35] Berntsson, F.; Ghosh, A.; Kozlov, V.; Nazarov, S., A one dimensional model of blood flow through a curvilinear artery, Appl. Math. Model., 63, 633-643 (2018) · Zbl 1480.76169
[36] Xiang, J.; Tremmel, M.; Kolega, J.; Levy, E. I.; Natarajan, S. K.; Meng, H., Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk, J. Neurointerv. Surg., 4, 5, 351-357 (2012)
[37] Jonášová, A.; Vimmr, J., Noninvasive assessment of carotid artery stenoses by the principle of multiscale modelling of non-newtonian blood flow in patient-specific models, Appl. Math. Comput., 319, 598-616 (2018) · Zbl 1426.76764
[38] Guerra, T.; Catarino, C.; Mestre, T.; Santos, S.; Tiago, J.; Sequeira, A., A data assimilation approach for non-newtonian blood flow simulations in 3d geometries, Appl. Math. Comput., 321, 176-194 (2018) · Zbl 1426.76763
[39] Castillo, E.; Codina, R., Stabilized stress-velocity-pressure finite element formulations of the navier-stokes problem for fluids with non-linear viscosity, Comput. Methods Appl. Mech. Eng., 279, 554-578 (2014) · Zbl 1423.76216
[40] Castillo, E.; Codina, R., Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem, Comput. Methods Appl. Mech. Eng., 279, 579-605 (2014) · Zbl 1423.76217
[41] Aguirre, A.; Castillo, E.; Cruchaga, M.; Codina, R.; Baiges, J., Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the vms type, J. Nonnewton Fluid Mech., 257, 22-43 (2018)
[42] Bird, R. B.; Amstrong, R. C.; Hassager, O., Dynamics of Polymeric Liquids, vol.1: Fluid Mechanics ch.1 (1987), Wiley: Wiley New York
[43] Yilmaz, F.; Gundogdu, M. Y., A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea-Aust. Rheol. J., 20, 4, 197-211 (2008)
[44] Cho, Y. I.; Kensey, K. R., Effects of the non-newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows, Biorheology, 28, 3-4, 241-262 (1991)
[45] Girault, V.; Raviart, P., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms (1986), Springer-Verlag, Berlin Heideberg: Springer-Verlag, Berlin Heideberg New York Tokio · Zbl 0585.65077
[46] Codina, R.; Badia, S.; Baiges, J.; Principe, J., Variational multiscale methods in computational fluid dynamics, Encyclop. Comput. Mech. (2017)
[47] Hughes, T. J.; Feijóo, G. R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[48] Codina, R., A stabilized finite element method for generalized stationary incompressible flows, Comput. Methods Appl. Mech. Eng., 190, 20-21, 2681-2706 (2001) · Zbl 0996.76045
[49] Codina, R., Analysis of a stabilized finite element approximation of the oseen equations using orthogonal subscales, Appl. Numer. Math., 58, 3, 264-283 (2008) · Zbl 1144.76029
[50] Codina, R.; Principe, J.; Guasch, O.; Badia, S., Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Comput. Methods Appl. Mech. Eng., 196, 21-24, 2413-2430 (2007) · Zbl 1173.76335
[51] Colomés, O.; Badia, S.; Codina, R.; Principe, J., Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows, Comput. Methods Appl. Mech. Eng., 285, 32-63 (2015) · Zbl 1423.76152
[52] Castillo, E.; Codina, R., Dynamic term-by-term stabilized finite element formulation using orthogonal subgrid-scales for the incompressible Navier-Stokes problem, Comput. Methods Appl. Mech. Eng., 349, 701-721 (2019) · Zbl 1441.76056
[53] Aguirre, A.; Castillo, E.; Cruchaga, M.; Codina, R.; Baiges, J., Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the VMS type, J. Nonnewton Fluid Mech., 257, 22-43 (2018)
[54] Aguirre, A.; Castillo, E.; Cruchaga, M.; Codina, R.; Baiges, J., Pseudoplastic fluid flows for different prandtl numbers: steady and time-dependent solutions, Int. J. Therm. Sci., 145, 106022 (2019)
[55] Neary, V.; Sotiropoulos, F., Numerical investigation of laminar flows through 90-degree diversions of rectangular cross-section, Comput. Fluids, 25, 2, 95-118 (1996) · Zbl 0875.76337
[56] Khandelwal, V.; Dhiman, A.; Baranyi, L., Laminar flow of non-newtonian shear-thinning fluids in a t-channel, Comput. Fluids, 108, 79-91 (2015) · Zbl 1390.76025
[57] Lee, D.; Su, J.; Liang, H., A numerical simulation of steady flow fields in a bypass tube, J. Biomech., 34, 11, 1407-1416 (2001)
[58] Elblbesy, M.; Hereba, A., Computation of the coefficients of power-law model for whole blood and their correlation with blood parameters, Appl. Phys. Res., 8, 1, 1-9 (2016)
[59] Kamenskiy, A. V.; Pipinos, I. I.; Carson, J. S.; MacTaggart, J. N.; Baxter, B. T., Age and disease-related geometric and structural remodeling of the carotid artery, J. Vasc. Surg., 62, 6, 1521-1528 (2015)
[60] Perktold, K.; Peter, R.; Resch, M.; Langs, G., Pulsatile non-newtonian blood flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles, J. Biomed. Eng., 13, 6, 507-515 (1991)
[61] Carpenter, J. P.; Lexa, F. J.; Davis, J. T., Determination of sixty percent or greater carotid artery stenosis by duplex doppler ultrasonography, J. Vasc. Surg., 22, 6, 697-705 (1995)
[62] Tang, D.; Yang, C.; Kobayashi, S.; Zheng, J.; Vito, R. P., Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model, Ann. Biomed. Eng., 31, 10, 1182-1193 (2003)
[63] Thomas, J. B.; Antiga, L.; Che, S. L.; Milner, J. S.; Hangan Steinman, D. A.; Spence, J. D.; Rutt, B. K.; Steinman, D. A., Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis, Stroke, 36, 11, 2450-2456 (2005)
[64] Phan, T. G.; Beare, R. J.; Jolley, D.; Das, G.; Ren, M.; Wong, K.; Chong, W.; Sinnott, M. D.; Hilton, J. E.; Srikanth, V., Carotid artery anatomy and geometry as risk factors for carotid atherosclerotic disease, Stroke, 43, 6, 1596-1601 (2012)
[65] Steinman, D. A., Assumptions in modelling of large artery hemodynamics, Modeling of Physiological Flows, 1-18 (2012), Springer
[66] Oyre, S.; Ringgaard, S.; Kozerke, S.; Paaske, W. P.; Erlandsen, M.; Boesiger, P.; Pedersen, E. M., Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data, J. Am. Coll. Cardiol., 32, 1, 128-134 (1998)
[67] Köhler, U.; Marshall, I.; Robertson, M. B.; Long, Q.; Xu, X. Y.; Hoskins, P. R., MRI measurement of wall shear stress vectors in bifurcation models and comparison with CFD predictions, J. Magn. Resonanc. Imaging: Off. J. Int. Soc. Magn. Resonanc. Med., 14, 5, 563-573 (2001)
[68] Papathanasopoulou, P.; Zhao, S.; Köhler, U.; Robertson, M. B.; Long, Q.; Hoskins, P.; Yun Xu, X.; Marshall, I., MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions, J. Magn. Reson. Imaging, 17, 2, 153-162 (2003)
[69] Glor, F.; Long, Q.; Hughes, A.; Augst, A.; Ariff, B.; Thom, S. M.; Verdonck, P.; Xu, X., Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow, Ann. Biomed. Eng., 31, 2, 142-151 (2003)
[70] Jou, L.-D.; Berger, S., Numerical simulation of the flow in the carotid bifurcation, Theor. Comput. Fluid Dyn., 10, 1-4, 239-248 (1998) · Zbl 0912.76043
[71] Compagne, K.; Dilba, K.; Postema, E.; van Es, A.; Emmer, B.; Majoie, C.; van Zwam, W.; Dippel, D.; Wentzel, J.; van der Lugt, A., Flow patterns in carotid webs: a patient-based computational fluid dynamics study, Am. J. Neuroradiol. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.