×

Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects. (English) Zbl 1481.74465

Summary: The main objective of this study is to predict both the subharmonic and superharmonic resonances of the nonlinear oscillation of nanobeams in the presence of surface free energy effects. To this purpose, Gurtin-Murdoch elasticity theory is adopted to the classical beam theory in order to consider the surface Lame constants, surface mass density, and residual surface stress within the differential equations of motion. The Galerkin method together with the method of multiple scales is utilized to investigate the size-dependent response of nanobeams under hard excitations corresponding to various boundary conditions. A parametric analysis is carried out to indicate the influence of the surface elastic parameters on the frequency-response as well as amplitude-response of the nonlinear secondary resonance including multiple vibration modes and interactions between them. It is seen that for the superharmonic excitation, except for the clamped-free boundary condition, the jump phenomenon is along the hardening direction, while in the clamped-free end supports, it is along the softening direction. Moreover, it is revealed that for the subharmonic excitation, within a specific range of the excitation amplitude, the nanobeam is excited, and this range shifts to lower external force by incorporating the surface free energy effects. It is found that in the case of superharmonic excitation, the value of the excitation frequency associated with the bifurcation point at the peak of the frequency-response curve increases by taking the surface free energy effect into consideration.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Kitipornchai, S.; He, X. Q.; Liew, K. M., Continuum model for the vibration of multilayered graphene sheets, Phys. Rev. B, 72, Article 075443 pp. (2005)
[2] Liew, K. M.; He, X. Q.; Kitipornchai, S., Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix, Acta Mater., 54, 4229-4236 (2006)
[3] Cao, G.; Chen, X.; Kysar, J. W., Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes, J. Mech. Phys. Solids, 54, 1206-1236 (2006) · Zbl 1120.74682
[4] Sansour, C.; Skatulla, S., A strain gradient generalized continuum approach for modelling elastic scale effects, Comput. Methods Appl. Mech. Eng., 198, 1401-1412 (2009) · Zbl 1227.74012
[5] Elishakoff, I.; Pentaras, D., Fundamental natural frequencies of double-walled carbon nanotubes, J. Sound Vib., 322, 652-664 (2009)
[6] Hu, Y. G.; Liew, K. M.; Wang, Q.; He, X. Q.; Yakobson, B. I., Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes, J. Mech. Phys. Solids, 56, 3475-3485 (2008) · Zbl 1171.74373
[7] Kiani, K., A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, Int. J. Mech. Sci., 52, 1343-1356 (2010)
[8] Wang, B.; Zhao, J.; Zhou, S., A micro scale Timoshenko beam model based on strain gradient elasticity theory, Eur. J. Mech. A Solids, 29, 591-599 (2010) · Zbl 1480.74194
[9] Kiani, K., Nonlocal and shear effects on column buckling of single-layered membranes from stocky single-walled carbon nanotubes, Compos. Part B Eng., 79, 535-552 (2015)
[10] Li, L.; Hu, Y.; Li, X., Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory, Int. J. Mech. Sci., 115-116, 135-144 (2016)
[11] Karlicic, D.; Kozic, P.; Pavlovic, R., Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium, Appl. Math. Model., 40, 1599-1614 (2016) · Zbl 1446.74023
[12] Sahmani, S.; Aghdam, M. M., Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory, Int. J. Mech. Sci., 131-132, 95-106 (2017)
[13] Sahmani, S.; Aghdam, M. M., Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity, Compos. Part B Eng., 114, 404-417 (2017)
[14] Sahmani, S.; Aghdam, M. M., Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity, Int. J. Mech. Sci., 122, 129-142 (2017)
[15] Yang, W. D.; Kang, W. B.; Wang, X., Thermal and surface effects on the pull-in characteristics of circular nanoplate NEMS actuator based on nonlocal elasticity theory, Appl. Math. Model., 43, 321-336 (2017) · Zbl 1446.74067
[16] Li, C.; Liu, J. J.; Cheng, M.; Fan, X. L., Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces, Compos. Part B Eng., 116, 153-169 (2017)
[17] Sahmani, S.; Aghdam, M. M., Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams, Compos. Struct., 179, 77-88 (2017)
[18] Liu, J. J.; Li, C.; Fan, X. L.; Tong, L. H., Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory, Appl. Math. Model., 45, 65-84 (2017) · Zbl 1446.74028
[19] Sahmani, S.; Aghdam, M. M., Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory, Eur. Phys. J. Plus, 132, 490 (2017)
[20] Sahmani, S.; Aghdam, M. M.; Bahrami, M., An efficient size-dependent shear deformable shell model and molecular dynamics simulation for axial instability analysis of silicon nanoshells, J. Mol. Graph. Model., 77, 263-279 (2017)
[21] Zhu, X.; Li, L., Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity, Int. J. Mech. Sci., 133, 639-650 (2017)
[22] Fernandez-Saez, J.; Zaera, R., Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory, Int. J. Eng. Sci., 119, 232-248 (2017) · Zbl 1423.74476
[23] Sahmani, S.; Aghdam, M. M., Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell, Phys. Lett. A, 381, 3818-3830 (2017)
[24] Sahmani, S.; Aghdam, M. M., Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory, J. Biomech., 65, 49-60 (2017)
[25] Tang, Y.; Liu, Y.; Zhao, D., Wave dispersion in viscoelastic single walled carbon nanotubes based on the nonlocal strain gradient Timoshenko beam model, Phys. E, 87, 301-307 (2017)
[26] Zhang, L. W.; Zhang, Y.; Liew, K. M., Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory, Appl. Math. Model., 49, 691-704 (2017) · Zbl 1480.74139
[27] Sahmani, S.; Aghdam, M. M., Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory, J. Theor. Biol., 422, 59-71 (2017) · Zbl 1370.92024
[28] Sahmani, S.; Fattahi, A. M., Imperfection sensitivity of the size-dependent nonlinear instability of axially loaded FGM nanopanels in thermal environments, Acta Mech., 228, 3789-3810 (2017) · Zbl 1380.74095
[29] Dai, H. L.; Ceballes, S.; Abdelkefi, A.; Hong, Y. Z.; Wang, L., Exact modes for post-buckling characteristics of nonlocal nanobeams in a longitudinal magnetic field, Appl. Math. Model., 55, 758-775 (2018) · Zbl 1480.74081
[30] Ganapathi, M.; Polit, O., A nonlocal higher-order model including thickness stretching effect for bending and buckling of curved nanobeams, Appl. Math. Model., 57, 121-141 (2018) · Zbl 1480.74082
[31] Sahmani, S.; Fattahi, A. M., Development of efficient size-dependent plate models for axial buckling of single-layered graphene nanosheets using molecular dynamics simulation, Microsyst. Technol., 24, 1265-1277 (2018)
[32] Sahmani, S.; Aghdam, M. M., Nonlinear instability of hydrostatic pressurized microtubules surrounded by cytoplasm of a living cell including nonlocality and strain gradient microsize dependency, Acta Mech., 229, 403-420 (2018) · Zbl 1383.92019
[33] Fang, X.-Q.; Zhu, C.-S.; Liu, J.-X.; Liu, X.-L., Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures, Phys. B Cond. Matter, 529, 41-56 (2018)
[34] El-Borgi, S.; Rajendran, P.; Friswell, M. I.; Trabelssi, M.; Reddy, J. N., Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory, Compos. Struct., 186, 274-292 (2018)
[35] Sahmani, S.; Aghdam, M. M., Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency, Results Phys., 8, 879-892 (2018)
[36] Mohammadi, K.; Rajabpour, A.; Ghadiri, M., Calibration of nonlocal strain gradient shell model for vibration analysis of a CNT conveying viscous fluid using molecular dynamics simulation, Computat. Mater. Sci., 148, 104-115 (2018)
[37] Sahmani, S.; Aghdam, M. M.; Rabczuk, T., Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory, Compos. Struct., 186, 68-78 (2018)
[38] Sahmani, S.; Aghdam, M. M.; Rabczuk, T., A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets, Mater. Res. Expr., 5, Article 045048 pp. (2018)
[39] Sahmani, S.; Aghdam, M. M.; Rabczuk, T., Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs, Compos. Struct., 198, 51-62 (2018)
[40] Sahmani, S.; Aghdam, M. M., Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules, Math. Biosci., 295, 24-35 (2018) · Zbl 1380.92009
[41] Streitz, F. H.; Cammarata, R. C.; Sieradzki, K., Surface stress effects on elastic properties I. Thin metal films, Phys. Rev. B, 49, 10699-10706 (1994)
[42] Dingreville, R.; Qu, J.; Cherkaoui, M., Surface free energy and its effects on the elastic behavior of nano-sized particles, wires and films, J. Mech. Phys. Solids, 53, 1827-1954 (2005) · Zbl 1120.74683
[43] Fischer, F. D.; Waitz, T.; Vollath, D.; Simha, N. K., On the role of surface energy and surface stress in phase-transforming nanoparticles, Progr. Mater. Sci., 53, 481-527 (2008)
[44] Gurtin, M. E.; Murdoch, A. I., A continuum theory of elastic material surface, Arch. Ration. Mech. Anal., 57, 291-323 (1975) · Zbl 0326.73001
[45] Gurtin, M. E.; Murdoch, A. I., Surface stress in solids, In. J. Solids Struct., 14, 431-440 (1978) · Zbl 0377.73001
[46] Wang, G.-F.; Feng, X.-Q., Effects of surface elasticity and residual surface tension on the natural frequency of microbeams, Appl. Phys. Lett., 90 (2007), 231904-231903
[47] Abbasion, S.; Rafsanjani, A.; Avazmohammadi, R.; Farshidianfar, A., Free vibration of microscaled Timoshenko beams, Appl. Phys. Lett., 95, 143122-143123 (2009)
[48] Tian, L.; Rajapakse, R. K.N. D., Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity, Int. J. Solids Struct., 44, 7988-8005 (2007) · Zbl 1167.74525
[49] Lü, C. F.; Chen, W. Q.; Lim, C. W., Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies, Compos. Sci. Technol., 69, 1124-1130 (2009)
[50] Zhao, X. J.; Rajapakse, R. K.N. D., Analytical solutions for a surface loaded isotropic elastic layer with surface energy effects, Int. J. Eng. Sci., 47, 1433-1444 (2009) · Zbl 1213.74243
[51] Fu, Y.; Zhang, J.; Jiang, Y., Influences of surface energies on the nonlinear static and dynamic behaviors of nanobeams, Phys. E, 42, 2268-2273 (2010)
[52] Sahmani, S.; Aghdam, M. M.; Bahrami, M., On the postbuckling behavior of geometrically imperfect cylindrical nanoshells subjected to radial compression including surface stress effects, Compos. Struct., 131, 414-424 (2015)
[53] Sahmani, S.; Bahrami, M.; Aghdam, M. M., Surface stress effects on the postbuckling behavior of geometrically imperfect cylindrical nanoshells subjected to combined axial and radial compressions, Int. J. Mech. Sci., 100, 1-22 (2015)
[54] Sahmani, S.; Aghdam, M. M.; Bahrami, M., Nonlinear buckling and postbuckling behavior of cylindrical nanoshells subjected to combined axial and radial compressions incorporating surface stress effects, Compos. Part B Eng., 79, 676-691 (2015)
[55] Zhang, Y. Q.; Pang, M.; Chen, W. Q., Transverse vibrations of embedded nanowires under axial compression with high-order surface stress effects, Phys. E, 66, 238-244 (2015)
[56] Cheng, C.-H.; Chen, T., Size-dependent resonance and buckling behavior of nanoplates with high-order surface stress effects, Phys. E, 67, 12-17 (2015)
[57] Sahmani, S.; Aghdam, M. M.; Bahrami, M., On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects, Compos. Struct., 121, 377-385 (2015)
[58] Dai, H. L.; Zhao, D. M.; Zou, J. J.; Wang, L., Surface effect on the nonlinear forced vibration of cantilevered nanobeams, Phys. E, 80, 25-30 (2016)
[59] Zhao, D.; Liu, J.; Wang, L., Nonlinear free vibration of a cantilever nanobeam with surface effects: Semi-analytical solutions, Int. J. Mech. Sci., 113, 184-195 (2016)
[60] Mercan, K.; Civalek, O., Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ, Compos. Part B Eng., 114, 34-45 (2017)
[61] Sahmani, S.; Aghdam, M. M.; Bahrami, M., Nonlinear buckling and postbuckling behavior of cylindrical shear deformable nanoshells subjected to radial compression including surface free energy effects, Acta Mec. Solida Sin., 30, 209-222 (2017) · Zbl 1380.74094
[62] Sahmani, S.; Aghdam, M. M., Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments, Arch. Civ. Mech. Eng., 17, 623-638 (2017)
[63] Sahmani, S.; Aghdam, M. M.; Bahrami, M., Surface free energy effects on the postbuckling behavior of cylindrical shear deformable nanoshells under combined axial and radial compressions, Meccanica, 52, 1329-1352 (2017) · Zbl 1380.74094
[64] Younes, M. I.; Nayfeh, A. H., A study of the nonlinear response of a resonant microbeam to an electric actuation, Nonlinear Dyn., 31, 91-117 (2003) · Zbl 1047.74027
[65] Raheb, I.; Tian, X.; Gu, F.; Ball, A. D., The influence of rolling bearing clearances on diagnostic signatures based on a numerical simulation and experimental evaluation, Int. J. Hydromechatron., 1, 16-46 (2018)
[66] Henderson, J. P.; Plummer, A.; Johnston, N., An electro-hydrostatic actuator for hybrid active-passive vibration isolation, Int. J. Hydromechatron., 1, 47-71 (2018)
[67] Ghayesh, M. H.; Farokhi, H.; Amabili, M., Nonlinear dynamics of a micro scale beam based on the modified couple stress theory, Compos. Part B Eng., 50, 318-324 (2013)
[68] Ghayesh, M. H.; Farokhi, H.; Amabili, M., In-plane and out-of-plane motion characteristics of microbeams with modal interaction, Compos. Part B Eng., 60, 423-439 (2014)
[69] Pallay, M.; Daeichin, M.; Towfighian, S., Dynamic behavior of an electrostatic MEMS resonator with repulsive actuation, Nonlinear Dyn., 89, 1525-1538 (2017)
[70] Sahmani, S.; Bahrami, M.; Aghdam, M. M.; Ansari, R., Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams, Compos. Struct., 118, 149-158 (2014)
[71] Miller, R. E.; Shenoy, V. B., Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11, 139-147 (2000)
[72] Zhu, R.; Pan, E.; Chung, P. W.; Cai, X.; Liew, K. M.; Buldum, A., Atomistic calculation of elastic moduli in strained silicon, Semicond. Sci. Technol., 21, 906-911 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.