×

Exact modes for post-buckling characteristics of nonlocal nanobeams in a longitudinal magnetic field. (English) Zbl 1480.74081

Summary: An exact mode solution that investigates the prebuckling and postbuckling characteristics of nonlocal nanobeams with fixed-fixed, hinged-hinged, and fixed-hinged boundary conditions in a longitudinal magnetic field is determined. The geometric nonlinearity arising from mid-plane stretching is considered to obtain the nonlinear governing equation of motion by virtue of Hamilton’s principle. The influences of the nonlocal and magnetic parameters on the prebuckling and postbuckling dynamics of nanobeams with various boundary conditions are evaluated, indicating that the critical buckling force can be decreased with the increase of the nonlocal parameter while can be increased with increasing the magnetic parameter. It is demonstrated that the first natural frequency of the nanobeam with fixed-fixed and fixed-hinged conditions in postbuckling configuration is increased from zero to a constant value for higher values of the nonlocal parameter with increasing the axial force. The second natural frequency of the buckled nanobeam is always decreased with an increase of the nonlocal parameter. The results show that the internal resonance between the first and second modes of the postbuckling nanobeams can be quickly and easily activated by increasing the nonlocal parameters, especially for fixed-fixed and hinged-hinged boundary conditions. In addition, the results obtained by exact mode solution are compared those obtained by classical mode solution. It is found that the classical mode is valid only for nonlocal nanobeams with the hinged-hinged boundary conditions.

MSC:

74G60 Bifurcation and buckling
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Farokhi, H.; M, P. Paidoussis; Misra, A. K., A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators, J. Sound Vib., 378, 56-75 (2016)
[2] Eltaher, M. A.; Khater, M. E.; Emam, SamirA., A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams, Appl. Math. Model., 40, 4109-4128 (2016) · Zbl 1459.74059
[3] Ebrahimi, F.; Barati, M. R., Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory, Acta Mech. Solida Sin., 29, 547-554 (2016)
[4] Waters, J.; Riester, L.; Jouzi, M.; Guduru, P.; Xu, J., Buckling instabilities in multiwalled carbon nanotubes under uniaxial compression, Appl. Phys. Lett., 85, 1787-1789 (2004)
[5] Thai, H.-T., A nonlocal beam theory for bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci., 52, 56-64 (2012) · Zbl 1423.74356
[6] Li, C.; Lim, C. W.; Yu, J. L., Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load, Smart Mater. Struct., 20, Article 015023 pp. (2011)
[7] Yoon, J. W.; Hwang, H. J., Molecular dynamics modeling and simulations of a single-walled carbon-nanotube-resonator encapsulating a finite nanoparticle, Comput. Mater. Sci., 50, 2741-2744 (2011)
[8] Lee, J. H.; Kang, J. W., Vibrational analysis of cantilevered carbon-nanotube resonator with different linear density of attached mass: molecular dynamics simulations, J. Comput. Theor. Nanosci., 10, 1863-1867 (2013)
[9] Wang, L.; Hong, Y. Z.; Dai, H. L.; Ni, Q., Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field, Acta Mech. Solida Sin., 29, 567-576 (2016)
[10] Zhang, Y. W.; Zhou, L.; Fang, B.; Yang, T. Z., Quantum effects on thermal vibration of single-walled carbon nanotubes conveying fluid, Acta Mech. Solida Sin. (2017)
[11] Zhang, Z. J.; Liu, Y. S.; Zhao, H. L.; Liu, W., Acoustic nanowave absorption through clustered Carbon Nanotubes conveying fluid, Acta Mech. Solida Sin., 29, 257-270 (2016)
[12] Yoon, J.; Ru, C. Q.; Mioduchowski, A., Flow-induced flutter instability of cantilever carbon nanotubes, Int. J. Solids Struct., 43, 3337-3349 (2006) · Zbl 1121.74385
[13] Roostai, H.; Haghpanahi, M., Transverse vibration of a hanging nonuniformnanosclae tube based on nonlocal elasticity theory with surface effects, Acta Mech. Solida Sin., 27, 202-209 (2014)
[14] Wang, L., Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory, Phys. E, 41, 1835-2840 (2009)
[15] Lee, H.; Chang, W., Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory, J. Appl. Phys., 103, Article 024302 pp. (2008)
[16] Ali-Akbari, H. R.; Ceballes, S.; Abdelkefi, A., Geometrical influence of a deposited particle on the performance of bridged carbon nanotube-based mass detectors, Phys. E, 96, 31-46 (2017)
[17] Tounsi, A.; Heireche, H.; Bedia, E. A.A., Comment on “Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory”, J. Appl. Phys., 103, Article 024302 pp. (2008), (J. Appl. Phys., 105(2009), 126105)
[18] Wang, L. F.; Guo, W. L.; Hu, H. Y., Flexural wave dispersion in multi-walled carbon nanotubes conveying fluids, Acta Mech. Solida Sin., 22, 623-629 (2009)
[19] Wang, L., Surface effect on buckling configuration of nanobeams containing internal flowing fluid: a nonlinear analysis, Phys. E, 44, 808-812 (2012)
[20] Zhang, Y. W.; Yang, T. Z.; Zang, J.; Fang, B., Terahertz wave propagation in a nanotube conveying fluid taking into account surface effect, Materials, 6, 2393-2399 (2013)
[21] Wang, L.; Ni, Q., A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid, Mech. Res. Commun., 36, 833-837 (2009) · Zbl 1273.74090
[22] Azrar, A.; Azrar, L.; Aljinaidi, A. A., Numerical modeling of dynamic and parametric instabilities of single-walled carbon nanotubes conveying pulsating and viscous fluid, Compos. Struct., 125, 127-143 (2015)
[23] Eltaher, M. A.; Alshorbagy, A. E.; Mahmoud, F. F., Vibration analysis of Euler-Bernoulli nanobeams by using finite element method, Appl. Math. Model., 37, 4787-4797 (2013)
[24] Ansari, R.; Gholami, R.; Norouzzadeh, A.; Darabi, M. A., Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model, Acta Mech. Sin., 31, 708-719 (2015), 24 · Zbl 1345.74034
[25] Natsuki, T.; Ni, Q. Q., Wave propagation in single- and double-walled carbon nanotubes willed with fluid, J. Appl. Phys., 101, Article 034319 pp. (2007)
[26] Wang, Y. Z.; Li, F. M.; Kishimoto, K., Wave propagation characteristics in fluid-conveying double-walled nanotubes with scale effects, Comput. Mater. Sci., 48, 413-418 (2010)
[27] Zhen, Y. X.; Fang, B.; Tang, Y., Thermal-mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium, Phys. E, 44, 379-385 (2011)
[28] Kuang, Y. D.; He, X. Q.; Chen, C. Y.; Li, G. Q., Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid, Comput. Mater. Sci., 45, 875-880 (2009)
[29] Zhen, Y. X.; Fang, B., Nonlinear vibration of fluid-conveying single-walled carbon nanotubes under harmonic excitation, Int. J. Nonlinear Mech., 76, 48-55 (2015)
[30] Dai, H. L.; Wang, L.; Abdelkefi, A.; Ni, Q., On nonlinear behavior and buckling of fluid-transporting nanotubes, Int. J. Eng. Sci., 87, 13-22 (2015)
[31] Gurtin, M.; Weissmüller, J.; Larche, F., A general theory of curved deformable interfaces in solids at equilibrium, Phil. Mag. A., 78, 1093 (1998)
[32] Wang, G. F.; Feng, X. Q., Effects of surface elasticity and residual surface tension on the natural frequency of microbeams, Appl. Phys. Lett., 90, Article 231904 pp. (2007)
[33] He, J.; Lilley, C. M., Surface stress effect on bending resonance of nanowires with different boundary conditions, Appl. Phys. Lett., 93, Article 263108 pp. (2008)
[34] Park, H. S., Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered, Nanotechnology, 20, Article 115701 pp. (2009)
[35] Ansari, R.; Sahmani, S., Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories, Int. J. Eng. Sci., 49, 1244-1255 (2011)
[36] Sahmani, S.; Bahrami, M.; Aghdam, M. M.; Ansari, R., Postbuckling behavior of circular higher-order shear deformable nanoplates including surface energy effects, Appl. Math. Model., 39, 3678-3689 (2015) · Zbl 1443.74226
[37] Wang, J. X.; Huang, Z. P.; Duan, H. L.; Yu, S. W.; Feng, X. Q.; Wang, G. F.; Zhang, W. X.; Wang, T. J., Surface stress effect in mechanics of nanostructured materials, Acta Mech. Solida Sin., 24, 52 (2011)
[38] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 2731-2743 (2002) · Zbl 1037.74006
[39] Ke, L. L.; Wang, Y. S., Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory, Phys. E, 43, 1031-1039 (2011)
[40] Abdi, J.; Koochi, A.; A. S.Kazemi, M. Abadyan, Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory, Smart Mater. Struct., 20, Article 055011 pp. (2011)
[41] Aifantis, E. C., Strain gradient interpretation of size effects, Int. J. Fract., 95, 1-4 (1999)
[42] Li, L.; Hu, Y., Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, Int. J. Eng. Sci., 97, 84-94 (2015) · Zbl 1423.74495
[43] Eringen, A. C., Nonlocal polar elastic continua, Inter. J. Eng. Sci., 10, 1-16 (1972) · Zbl 0229.73006
[44] Emam, S. A., A general nonlocal nonlinear model for buckling of nanobeams, Appl. Math. Model., 37, 6929-6939 (2013) · Zbl 1438.74098
[45] Shaat, M.; Abdelkefi, A., New insights on the applicability of Eringen’s nonlocal theory, Int. J. Mech. Sci., 121, 67-75 (2017)
[46] Mohammad, Z. N.; Amin, H.; Abbas, R., Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory, Int. J. Eng. Sci., 103, 1-10 (2016) · Zbl 1423.74349
[47] Lu, L.; Guo, X.; Zhao, J., Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, Int. J. Eng. Sci., 116, 12-24 (2017) · Zbl 1423.74499
[48] Şimşek, M., Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory, Compos. Part B Eng., 56, 621-628 (2014)
[49] EI-Borgi, S.; Fernandes, R.; Reddy, J. N., Non-local free and forced vibrations of graded nanobeams resting on a non-linear elastic foundation, Int. J. Nonlinear Mech., 77, 348-363 (2015)
[50] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703 (1983)
[51] Lu, P.; Lee, H. P.; Lu, C.; Zhang, P. Q., Dynamic properties of flexural beams using a nonlocal elasticity model, J. Appl. Phys., 99, Article 073510 pp. (2006)
[52] Lim, C. W.; Yang, Y., New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes, J. Comput. Theor. Nanosci., 7, 988-995 (2010)
[53] Shaat, M.; Abdelkefi, A., Reporting the sensitivities and resolutions of CNT-based resonators for mass sensing, Mater. Des., 114, 591-598 (2017)
[54] Zhao, M. H.; Cheng, G. J.; Liu, G. N.; Shen, Y. P., The analysis of crack problems with non-local elasticity, Appl. Math. Mech., 20, 135-143 (1999) · Zbl 0963.74054
[55] Narendar, S.; Gupta, S. S.; Gopalakrishnan, S., Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory, Appl. Math. Model., 36, 4529-4538 (2012) · Zbl 1252.74016
[56] Reddy, J. N., Non-local nonlinear formulations for bending of classical and shear deformation theories of beams and plates, Int. J. Eng. Sci., 48, 1507-1518 (2010) · Zbl 1231.74048
[57] Şimşek, M., Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach, Int. J. Eng. Sci., 105, 12-27 (2016) · Zbl 1423.74412
[58] Bagdatli, S. M., Non-linear vibration of nanobeams with various boundary condition based on nonlocal elasticity theory, Compos. Part B Eng., 80, 43-52 (2015)
[59] Li, L.; Hu, Y., Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material, Int. J. Eng. Sci., 107, 77-97 (2016) · Zbl 1423.74496
[60] Ansari, R.; Hasrati, E.; Gholami, R.; Sadeghi, F., Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto-electro-thermo elastic nanobeams, Compos. Part B Eng., 83, 226-241 (2015)
[61] Ansari, R.; Gholami, R.; Faghih Shojaei, M.; Mohammadi, V.; Darabi, M. A., Coupled longitudinal-transverse-rotational free vibration of post-buckled functionally graded first-order shear deformable micro- and nano-beams based on the Mindlin’s strain gradient theory, Appl. Math. Model., 40, 9872-9891 (2016) · Zbl 1443.74014
[62] Li, L.; Hu, Y., Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstrucuture-dependent strain gradient effects, Int. J. Mech. Sci., 120, 159-170 (2017)
[63] Dong, Y. H.; Zhang, Y. F.; Li, Y. H., An analytical formulation for postbuckling and buckling vibration of micro-scale laminated composite beams considering hygrothermal effect, Compos. Struct., 170, 11-25 (2017)
[64] Kraus, J. D., Electromagnetics (1984), McGrawHill, Inc.: McGrawHill, Inc. USA · Zbl 0053.15402
[65] Nayfeh, A.; Emam, S., Exact solution and stability of postbuckling configurations of beams, Nonlinear Dyn., 54, 395-408 (2008) · Zbl 1173.74019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.