×

Thermoelastic modeling and comparative analysis of biomass sensors under rippling deformation and magnetic field. (English) Zbl 1481.74562

Summary: This study is intended for investigating the linear and nonlinear responses of carbon nanotube-based mass sensors in thermal and magnetic environment. For accurate modeling, the carbon nanotube rippling deformation effect is considered and various representations for the thermal expansion are examined and compared to each other. By utilizing Euler-Bernoulli beam theory assumptions and Eringen’s nonlocal elasticity theory, the nonlinear reduced-order model is developed on the basis of the extended Hamilton’s principle. The results show that the natural and resonant frequencies and frequency shifts of the system are strongly dependent on the magnetic field and thermal expansion representation. The method of multiple scale is used to determine the modulation equation including the von Karman and rippling nonlinearities. The results show a very good agreement between the perturbation solution and the numerical integration results for specific conditions of the forcing, temperature difference, and quality factor. A comparative study between the linear and nonlinear mass sensing approaches is performed to show their limits of applicability. It is demonstrated that the linear approach may result in erroneous detection of the deposited mass. The obtained results indicate that the longitudinal magnetic field enhances the dynamic stability of the carbon nanotube mechanical resonator in the pre-buckling oscillation regime, while the dynamic stability of the nanoscale resonator is decreased in the presence of the magnetic field for the post-buckling configuration. Also, the ripple-based nonlinearity is accompanied by an increase in the mass responsivity of the resonator. On the contrary, mass sensitivity of the carbon nanotube resonator is diminished by considering the von Kármán geometric nonlinearity. This study shows the importance of considering the nonlinear effects on the system’s sensitivity from frequency and amplitude sensing techniques.

MSC:

74M05 Control, switches and devices (“smart materials”) in solid mechanics
74F05 Thermal effects in solid mechanics
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Ijima, S., Helical microtubules of graphitic carbon, Nature, 361, 333-334 (1993)
[2] Bianco, A., Carbon nanotubes for the delivery of therapeutic molecules, Expert Opin. Drug Deliv., 1, 1, 57-65 (2004)
[3] Hughes, G. A., Nanostructure-mediated drug delivery, Nanomed. Cancer, 47-72 (2017)
[4] Kostarelos, K.; Lacerda, L.; Partidos, C. D.; Prato, M.; Bianco, A., Carbon nanotube-mediated delivery of peptides and genes to cells: translating nanobiotechnology to therapeutics, J. Drug Deliv. Sci. Technol., 15, 1, 41-47 (2005)
[5] Yonzon, C. R.; Stuart, D. A.; Zhang, X.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P., Towards advanced chemical and biological nanosensors—an overview, Talanta, 67, 3, 438-448 (2005)
[6] Senesac, L.; Thundat, T. G., Nanosensors for trace explosive detection, Mater. Today, 11, 3, 28-36 (2008)
[7] Bogue, R., Nanosensors: a review of recent progress, Sens. Rev., 28, 12-17 (2008)
[8] Akyildiz, I. F.; Jornet, J. M., Electromagnetic wireless nanosensor networks, Nano Commun. Netw., 1, 1, 3-19 (2010)
[9] Ghaffari, S. S.; Ceballes, S.; Abdelkefi, A., Role and significance of thermal loading on the performance of carbon nanotube-based mass sensors, Mater. Des., 160, 229-250 (2018)
[10] Ghaffari, S. S.; Ceballes, S.; Abdelkefi, A., Effects of thermal loads representations on the dynamics and characteristics of carbon nanotubes-based mass sensors,”, Smart Mater. Struct., 28, 7, Article 074003 pp. (2019)
[11] Ali-Akbari, H. R.; Shaat, M.; Abdelkefi, A., Bridged single-walled carbon nanotube-based atomic-scale mass sensors, Appl. Phys. A, 122, 8, 762 (2016)
[12] Shaat, M.; Abdelkefi, A., Reporting the sensitivities and resolutions of CNT-based resonators for mass sensing, Mater. Des., 114, 591-598 (2017)
[13] Ali-Akbari, H. R.; Ceballes, S.; Abdelkefi, A., Geometrical influence of a deposited particle on the performance of bridged carbon nanotube-based mass detectors, Phys. E: Low-dimens. Syst. Nanostruct., 94, 31-46 (2017)
[14] Ali-Akbari, H. R.; Ceballes, S.; Abdelkefi, A., Nonlinear performance analysis of forced carbon nanotube-based bio-mass sensors, Int. J. Mech. Mater. Des., 15, 2, 291-315 (2019)
[15] Zhou, L. G.; Shi, S. Q., Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage, Comput. Mater. Sci., 23, 1-4, 166-174 (2002)
[16] Hirscher, M. B.M.; Haluska, M.; Quintel, A.; Skakalova, V.; Choi, Y. M.; Dettlaff-Weglikowska, U.; Roth, S.; Stepanek, I.; Bernier, P.; Leonhardt, A.; Fink, J., Hydrogen storage in carbon nanostructures, J. Alloys Compd., 330, 654-658 (2002)
[17] Haluska, M.; Hirscher, M.; Becher, M.; Dettlaff‐Weglikowska, U.; Chen, X.; Roth, S., Hydrogen storage in carbon SWNTs: atomic or molecular?, Am. Inst. Phys. (2002)
[18] Li, J.; Furuta, T.; Goto, H.; Ohashi, T.; Fujiwara, Y.; Yip, S., Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures, J. Chem. Phys., 119, 4, 2376-2385 (2003)
[19] Wu, N.; Wang, Q.; Arash, B., Ejection of DNA molecules from carbon nanotubes, Carbon, 50, 13, 4945-4952 (2012)
[20] Li, M.; Myers, E. B.; Tang, H. X.; Aldridge, S. J.; McCaig, H. C.; Whiting, J. J.; Simonson, R. J.; Lewis, N. S.; Roukes, M. L., Nanoelectromechanical resonator arrays for ultrafast, gas-phase chromatographic chemical analysis, Nano Lett., 10, 10, 3899-3903 (2010)
[21] Wang, X.; Wang, X. Y.; Xiao, J., A non-linear analysis of the bending modulus of carbon nanotubes with rippling deformations, Compos. Struct., 69, 3, 315-321 (2005)
[22] Falvo, M. R.; Clary, G. J.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Washburn, S.; Superfine, R., Bending and buckling of carbon nanotubes under large strain, Nature, 389, 6651, 582-584 (1997)
[23] Mehdipour, I.; Barari, A.; Domairry, G., Effects of rippling deformation and midplane stretching on nonlinear vibration of embedded carbon nanotube, Int. J. Multisc. Comput. Eng., 10, 3 (2012)
[24] Sedighi, H. M.; Farjam, N., A modified model for dynamic instability of CNT based actuators by considering rippling deformation, tip-charge concentration and Casimir attraction, Microsyst. Technol., 23, 6, 2175-2191 (2017)
[25] Ouakad, H. M.; Sedighi, H. M., Rippling effect on the structural response of electrostatically actuated single-walled carbon nanotube based NEMS actuators, Int. Journal Non-Linear Mech., 87, 97-108 (2016)
[26] Soltani, P.; Ganji, D. D.; Mehdipour, I.; Farshidianfar, A., Nonlinear vibration and rippling instability for embedded carbon nanotubes, J. Mech. Sci.Technol., 26, 4, 985-992 (2012)
[27] Zhang, Z.; Lan, L.; Wang, Y.; Wang, C., Vibration frequency analysis of rippled single-layered graphene sheet: toward the nano resonant devices design, Phys. E: Low-dimens. Syst. Nanostruct., 114, Article 113580 pp. (2019)
[28] Farjam, N., Pull-in behavior of a bio-mass sensor based on an electrostatically actuated cantilevered CNT with consideration of rippling effect, J. Appl. Comput. Mech., 1, 4, 229-239 (2016)
[29] Zhang, D. B.; Dumitrica, T., Effective strain in helical rippled carbon nanotubes: a unifying concept for understanding electromechanical response, ACS Nano, 4, 11, 6966-6972 (2010)
[30] Liu, J. Z.; Zheng, Q.; Jiang, Q., Effect of a rippling mode on resonances of carbon nanotubes, Phys. Rev. Lett., 86, 21, 4843 (2001)
[31] Nikiforov, I.; Zhang, D. B.; James, R. D.; Dumitrică, T., Wavelike rippling in multiwalled carbon nanotubes under pure bending, Appl. Phys. Lett., 96, 12, Article 123107 pp. (2010)
[32] Wang, X.; Zhang, Y. C.; Xia, X. H.; Huang, C. H., Effective bending modulus of carbon nanotubes with rippling deformation, Int. J. Solids Struct., 41, 22-23, 6429-6439 (2004) · Zbl 1179.74112
[33] Jackman, H.; Krakhmalev, P.; Svensson, K., Large variations in the onset of rippling in concentric nanotubes, Appl. Phys. Lett., 104, 2, Article 021910 pp. (2014)
[34] Bonilla, L. L.; Carpio, A., Model of ripples in graphene, Phys. Rev. B, 86, 19, Article 195402 pp. (2012)
[35] Baimova, VB J. A.; Dmitriev, S. V.; Zhou, K., Strain‐induced ripples in graphene nanoribbons with clamped edges, Phys. Status Solidi (b), 249, 7, 1393-1398 (2012)
[36] Arroyo, M.; Belytschko, T., Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes, Phys. Rev. Lett., 91, 21, Article 215505 pp. (2003)
[37] Zare, J.; Shateri, A., Instability threshold of rippled carbon nanotube nanotweezers in the low vacuum gas flow incorporating Dirichlet and Neumann modes of Casimir energy, Phys. E: Low-dimens. Syst. Nanostruct., 90, 67-75 (2017)
[38] Li, X.; Yang, W.; Liu, B., Bending induced rippling and twisting of multiwalled carbon nanotubes, Phys. Rev. Lett., 98, 20, Article 205502 pp. (2007)
[39] Arroyo, M.; Arias, I., Rippling and a phase-transforming mesoscopic model for multiwalled carbon nanotubes, J. Mech. Phys. Solids, 56, 4, 1224-1244 (2008) · Zbl 1171.74366
[40] Huang, X.; Zou, J.; Zhang, S., Bilinear responses and rippling morphologies of multiwalled carbon nanotubes under torsion, Appl. Phys. Lett., 93, 3, Article 031915 pp. (2008)
[41] Jackman, H.; Krakhmalev, P.; Svensson, K., Mechanical behavior of carbon nanotubes in the rippled and buckled phase, J. Appl. Phys., 117, 8, Article 084318 pp. (2015)
[42] Murmu, T.; McCarthy, M. A.; Adhikari, S., In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach, Compos. Struct., 96, 57-63 (2013)
[43] Dai, H. L.; Ceballes, S.; Abdelkefi, A.; Hong, Y. Z.; Wang, L., Exact modes for post-buckling characteristics of nonlocal nanobeams in a longitudinal magnetic field, Appl. Math. Model., 55, 758-775 (2018) · Zbl 1480.74081
[44] Murmu, T.; McCarthy, M. A.; Adhikari, S., Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach, J. Sound Vibr., 331, 23, 5069-5086 (2012)
[45] Li, L.; Hu, Y.; Ling, L., Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory, Phys. E: Low-dimens. Syst. Nanostruct., 75, 118-124 (2016)
[46] Wang, H.; Dong, K.; Men, F.; Yan, Y. J.; Wang, X., Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix, Appl. Math. Modell., 34, 4, 878-889 (2010) · Zbl 1185.82077
[47] Ajiki, H.; Ando, T., Energy bands of carbon nanotubes in magnetic fields, J. Phys. Soc. Jpn., 65, 2, 505-514 (1996)
[48] Chang, T. P., Nonlinear vibration of single-walled carbon nanotubes with nonlinear damping and random material properties under magnetic field, Compos. Part B: Eng., 114, 69-79 (2017)
[49] Chang, T. P., Nonlinear vibration of single-walled carbon nanotubes under magnetic field by stochastic finite element method, Int. J. Struct. Stab. Dyn., 16, 08, Article 1550046 pp. (2016) · Zbl 1359.74126
[50] Stamenković, M.; Karličić, D.; Goran, J.; Kozić, P., Nonlocal forced vibration of a double single-walled carbon nanotube system under the influence of an axial magnetic field, J. Mech. Mater. Struct., 11, 3, 279-307 (2016)
[51] Natsuki, T.; Matsuyama, N.; Shi, J. X.; Ni, Q. Q., Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads, Appl. Phys. A, 116, 3, 1001-1007 (2014)
[52] Jiang, H.; Liu, B.; Huang, Y.; Hwang, K. C., Thermal expansion of single wall carbon nanotubes, J. Eng. Mater. Technol., 126, 3, 265-270 (2004)
[53] Kraus, J., Electromagnetics (1984), McGraw-Hill, Inc: McGraw-Hill, Inc USA · Zbl 0053.15402
[54] Ghaffari, S. S.; Ceballes, S.; Abdelkefi, A., Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings, Nonlinear Dyn., 1-23 (2020)
[55] Li, C.; Chou, T. W., Mass detection using carbon nanotube-based nanomechanical resonators, Appl. Phys. Lett., 84, 25, 5246-5248 (2004)
[56] Mateiu, R.; Davis, Z. J.; Madsen, D. N.; Mølhave, K.; Bøggild, P.; Rassmusen, A. M.; Brorson, M.; Jacobsen, C. J.H.; Boisen, A., An approach to a multi-walled carbon nanotube based mass sensor, Microelectron. Eng., 73, 670-674 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.