×

Thermo-mechanical post-critical analysis of nonlocal orthotropic plates. (English) Zbl 1481.74205

Summary: A closed-form analytical solution for critical temperature and nonlinear post-critical temperature-deflection behaviour for nonlocal orthotropic plates subjected to thermal loading is presented. The long-range molecular interactions are represented by a nonlocal continuum framework, including orthotropy. The Von-Karman nonlinear strains are employed in deriving the governing equations. An approximate solution to the system of nonlinear partial differential equations is obtained using a perturbation type method. Series expansions up to second order of the associated field variables and the load parameter, dictating nonlinearity are employed. The behaviour in the post-critical regime is illustrated numerically by adopting an example of orthotropic Single Layer Graphene Sheet (SLGS), a widely acclaimed nano-structure, often modelled as plate. Post-critical temperature-deflection paths are presented with special emphasis on their post-critical reserve in strength and stiffness. Influence of aspect ratio and behaviour in higher modes are demonstrated. Implications of nonlocal interactions on the redistribution of in-plane forces are presented to show striking disparity with the classical plates. The obtained solution may serve as benchmark for verification of numerical solutions and may be useful in formulating simple design guidelines for plate type nanostructures liable to the thermal environment.

MSC:

74G60 Bifurcation and buckling
74K20 Plates
Full Text: DOI

References:

[1] Zhang, P.; Jiang, H.; Huang, Y.; Geubelle, P. H.; Hwang, K. C., An atomistic based continuum theory for carbon nanotubes, analysis of fracture nucleation, J. Mech. Phys. Solids, 52, 5, 977-998 (2004) · Zbl 1112.74311
[2] Arroyo, M.; Belystschko, T., An atomistic based finite deformation membrane for single layer crystalline films, J. Mech. Phys. Solids, 50, 9, 1941-1977 (2002) · Zbl 1006.74061
[3] Eringen, A. C.; Edelen, D. G.B., On nonlocal elasticity, Int. J. Eng. Sci., 10, 3, 233-248 (1972) · Zbl 0247.73005
[4] Eringen, A. C., Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., 10, 5, 425-435 (1972) · Zbl 0241.73005
[5] A.C. Eringen, Nonlocal Continuum Field Theories, 2003. · Zbl 1023.74003
[6] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 9, 4703-4710 (1983)
[7] Aifantis, E. C., On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., 30, 10, 1279-1299 (1992) · Zbl 0769.73058
[8] Ru, E. C.; Aifantis, C. Q., A simple approach to solve boundary value problems in gradient elasticity, Acta Mech., 101, 1-4, 59-68 (1993) · Zbl 0783.73015
[9] Ghosh, S.; Kumar, A.; Sundararaghavan, V.; Wass, A. M., Non-local modeling of epoxy using an atomistically informed kernel, Int. J. Solids Struct., 50, 19, 2837-2845 (2013)
[10] Eringen, A. C.; Speziale, C. Z.; Kim, B. S., Crack-tip problem in non-local elasticity, J. Mech. Phys. Solids, 25, 5, 339-355 (1977) · Zbl 0375.73083
[11] Salvetat, J. P.; Bonard, J. M.; Thomson, N. H.; Kulik, A. J.; Forro, L.; Benoit, W.; Zuppiroli, L., Mechanical properties of carbon nanotubes, Appl. Phys. A, 69, 3, 255-260 (1999)
[12] Ovidko, I. A., Mechanical properties of graphene, Rev. Adv. Mater. Sci., 34, 1-11 (2013)
[13] Huang, Y.; Zhang, F.; Hwang, K. C.; Nix, W. D.; Pharr, G. M.; Feng, G., A model of size effects in nano-indentation, J. Mech. Phys. Solids, 54, 8, 1668-1686 (2006) · Zbl 1120.74658
[14] Wang, W.; Zhong, Y.; Lu, K.; Lu, L.; McDowell, D. L.; Zhu, T., Size effects and strength fluctuations in nanoscale plasticity, Acta Mater., 60, 8, 3302-3309 (2012)
[15] Wang, C. M.; Zhang, Y. Y.; Ramesh, S. S.; Kitipornchai, S., Buckling analysis of micro- and nano-rods/tubes based on nonlocal timoshenko beam theory, J. Phys. D: Appl. Phys., 39, 3904-3909 (2006)
[16] Reddy, J. N., Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., 45, 2-8, 288-307 (2007) · Zbl 1213.74194
[17] Pradhan, S. C.; Murmu, T., Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics, Comput. Mater. Sci., 47, 268-274 (2009)
[18] Pradhan, S. C., Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory, Phys. Lett. A, 373, 45, 4182-4188 (2009) · Zbl 1236.74010
[19] Hashemi, S. H.; Samaei, A. T., Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory, Phys. E: Low-Dimens. Syst. Nanostruct., 43, 7, 1400-1404 (2011)
[20] Aksencer, T.; Aydogdu, M., Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory, Phys. E: Low-Dimens. Syst. Nanostruct., 43, 4, 954-959 (2011)
[21] Ansari, R.; Rouhi, H., Explicit analytical expressions for the critical buckling stresses in a monolayer graphene sheet based on nonlocal elasticity, Solid State Commun., 152, 2, 56-59 (2012)
[22] Farajpour, A.; Shahidi, A. R.; Mohammadi, M.; &Mahzoon, M., Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Compos. Struct., 94, 1605-1615 (2012)
[23] Hosseini, H. S.; Tourki, S. A., Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory, Physica E, 43, 1400-1404 (2011)
[24] Mohammad-Abadi, M.; Daneshmehr, A. R., Size dependent buckling analysis of micro-beams based on modified couple stress theory with high order theories and general boundary conditions, Int. J. Eng. Sci., 74, 1-14 (2014) · Zbl 1423.74347
[25] Narendar, S., Buckling analysis of micro-nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects, Compos. Struct., 93, 3093-3103 (2011)
[26] Kim, M.; Im, S., Buckling of multilayer graphene sheets subjected to axial compression based on a continuum mechanics model, J. Appl. Mech., 85, Article 061002-1-9 (2018)
[27] Zhang, Z.; Wang, C. M.; Challamel, N., Eringen’s length scale coefficient for buckling of nonlocal rectangular plates from microstructured beam-grid model, Int. J. Solids Struct., 51, 25, 4307-4315 (2014)
[28] Farajpour, A.; Mohammadi, M.; Shahidi, A. R.; Mahzoon, M., Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E, 43, 10, 1820-1825 (2011)
[29] Narendar, S.; Gopalakrishnan, S., Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two variables refined plate theory, Acta Mech., 223, 2, 295-413 (2012) · Zbl 1398.74123
[30] Samaei, A. T.; Abbasion, S.; Mirsayar, M. M., Buckling analysis of a single layer graphene sheet embedded in an elastic medium based on nonlocal mindlin plate theory, Mech. Res. Commun., 38, 7, 481-485 (2011) · Zbl 1272.74205
[31] Babaei, H.; Shahidi, A. R., Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the galerkin method, Arch. Appl. Mech., 81, 8, 1051-1062 (2011) · Zbl 1271.74081
[32] Ghazavi, M. R.; Molki, H., Nonlinear analysis of the micro/nanotube conveying fluid based on second strain gradient theory, Appl. Math. Model., 60, 77-93 (2018) · Zbl 1480.76045
[33] Dai, H. L.; Ceballes, S.; Abdelkefi, A.; Hong, Y. Z.; Wang, L., Exact modes for post-buckling characteristics of nonlocal nanobeams in a longitudinal magnetic field, Appl. Math. Model., 55, 758-775 (2018) · Zbl 1480.74081
[34] Yang, Y.; Wang, J.; Yu, Y., Wave propagation in fluid-filled single-walled carbon nanotube based on the nonlocal strain gradient theory, Acta Mech. Solida Sin., 31, 4, 484-492 (2018)
[35] Jiang, J. N.; Wang, L. F., Analytical solutions for thermal vibration of nanobeams with elastic boundary conditions, Acta Mech. Solida Sin., 30, 5, 474-483 (2017)
[36] Norouzzadeh, A.; Ansari, R., Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects, Thin Walled Struct., 127, 354-372 (2018)
[37] Ebrahimi, F.; Haghi, P., Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory, Acta Mech. Solida Sin., 30, 6, 647-657 (2017)
[38] Bazant, Z. P., Structural stability, Int. J. Solids Struct., 37, 1, 55-67 (2000) · Zbl 1073.74543
[39] Volmir, A. S., Flexible Plates and Shells (1967), Air Force Flight Dynamics Laboratory, Research and Technology Division, Air Force Systems Command
[40] Bazant, Z. P.; Cedolin, L., Stability of Structures (2010), Oxford University Press: Oxford University Press New York
[41] Stein, M., Loads and Deformations of Buckled Rectangular Plates (1959), NASA, Technical Report, R-40
[42] Usami, T., Effective width of locally buckled plates in compression and bending, J. Struct. Eng., 119, 5, 1358-1373 (1993)
[43] Mahdavi, M. H.; Jiang, L. Y.; Sun, X., Nonlinear vibration and post-buckling analysis of a single layer graphene sheet embedded in a polymer matrix, Physica E, 44, 1708-1715 (2012)
[44] Naderi, A.; Saidi, A. R., Nonlocal post-buckling analysis of graphene sheets in a nonlinear polymer medium, Int. J. Eng. Sci., 81, 49-65 (2014)
[45] Vaz, M. A.; Cyrino, J. C.R.; Neves, A. C., Initial thermo-mechanical post-buckling of beams with temperature-dependent physical properties, Int. J. Non Linear Mech., 45, 256-262 (2010)
[46] Bolotion, V. V., Dynamic stability of structures, (Kounadis, A. N.; Kratzig, W. B., Non-linear Stability of Structures. Theory and Computational Techniques (1995), Springer: Springer Wien), 1-72 · Zbl 0834.73028
[47] Virgin, L. N.; Dowell, E. H., Non-linear aeroelasticity and chaos, (Atluri, S. N., Computational Non-linear Mechanics in Aerospace Engineering (1992), AIAA: AIAA Washington, D.C.), 531-546
[48] Zhao, X.; Lee, Y. Y.; Liew, K. M., Mechanical and thermal buckling analysis of functionally graded plates, Compos. Struct., 90, 161-171 (2009)
[49] Noor, A. K.; Burton, W. S., Three-dimensional solutions for the thermal bucklingand sensitivity derivatives of temperature-sensitive multi-layered angle-plyplates. trans asme, J. Appl. Mech., 59, 848-856 (1992)
[50] Matsunaga, H., Thermal buckling of cross-ply laminated composite andsandwich plates according to a global higher-order deformation theory, Compos. Struct., 68, 439-454 (2005)
[51] Ebrahimi, Farzad; Salari, Erfan, Effect of various thermal loadings onbuckling and vibrational characteristics of nonlocal temperature-dependent fg nanobeams, Mech. Adv. Mater. Struct. (2015)
[52] Shen, L.; Shen, H.; Zhang, C., Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comput. Mater. Sci., 48, 3, 680-685 (2010)
[53] Murmu, T.; Pradhan, S. C., Small scale effect on the buckling of single-layered graphene sheets underbiaxial compression via nonlocal continuum mechanics, Comput. Mater. Sci., 47, 268-274 (2009)
[54] Khorshidi, A.; Fallah, A., Buckling analysis of functionally graded rectangular nano-plate basedon nonlocal exponential shear deformation theory, Int. J. Mech. Sci., 113, 94-104 (2016)
[55] Li, L.; Hu, Y., Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effect, Int. J. Mech. Sci., 120, 159-170 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.