×

An immersed selective discontinuous Galerkin method in particle-in-cell simulation with adaptive Cartesian mesh and polynomial preserving recovery. (English) Zbl 07797671

Summary: In this paper, a selective discontinuous Galerkin (SDG) method and a polynomial preserving recovery (PPR) method are developed and integrated with the immersed-finite-element particle-in-cell (IFE-PIC) method, in order to carry out the plasma-material interaction simulation on adaptive Cartesian meshes (ACM). To significantly save the computational cost in practice, the PIC simulation often needs to use Cartesian meshes for the whole domain and the ACM for some focused regions in the plasma-material interaction problems. Therefore, we utilize the SDG method with immersed finite elements for the field solver of the IFE-PIC method, as the key technique to allow the local Cartesian mesh refinement which will generate hanging nodes. To minimize the degree of freedom of the SDG on the ACM and reduce the computational cost, a new selective technique of the discontinuous global basis functions is proposed for the SDG. Various types of nodes in the ACM are discussed for the implementation of this selective technique, including the hanging nodes. Meanwhile, the gathering and scattering steps of the PIC simulation also need to be appropriately performed on the ACM. The PPR method is a generic gradient recovery technique to be incorporated into the IFE-PIC method for more accurate force deposition on the ACM. In addition, two other algorithmic structures of the traditional IFE-PIC method have been modified to accommodate the ACM in the simulation, including a new mapping array structure for the particle positioning and a new charge deposition with some special particle positions in the ACM. As a result, the integrated immersed-selective-discontinuous-Galerkin particle-in-cell (ISDG-PIC) method can efficiently perform the plasma-material interactions simulation on the Cartesian meshes with local mesh refinement independent of the interface. Several numerical experiments are performed to demonstrate the convergence, efficiency, and applicability of the proposed ISDG-PIC method.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
35Jxx Elliptic equations and elliptic systems
35Rxx Miscellaneous topics in partial differential equations
Full Text: DOI

References:

[1] Babuška, I., The finite element method for elliptic equations with discontinuous coefficients. Computing, 207-213 (1970) · Zbl 0199.50603
[2] Babuška, I.; Osborn, J. E., Can a finite element method perform arbitrarily badly?. Math. Comput., 230, 443-462 (2000) · Zbl 0940.65086
[3] Bramble, J. H.; King, J. T., A finite element method for interface problems in domains with smooth boundary and interfaces. Adv. Comput. Math., 109-138 (1996) · Zbl 0868.65081
[4] Chen, Z.; Zou, J., Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math., 175-202 (1998) · Zbl 0909.65085
[5] Adjerid, S.; Babuška, I.; Guo, R.; Lin, T., An enriched immersed finite element method for interface problems with nonhomogeneous jump conditions. Comput. Methods Appl. Mech. Eng. (2023) · Zbl 1536.65133
[6] Adjerid, S.; Lin, T.; Zhuang, Q., Error estimates for an immersed finite element method for second order hyperbolic equations in inhomogeneous media. J. Sci. Comput., 2, 1-25 (2020) · Zbl 1452.65220
[7] Chen, Y.; Deng, Z.; Huang, Y., Recovery-based a posteriori error estimation for elliptic interface problems based on partially penalized immersed finite element methods. Int. J. Numer. Anal. Model., 126-155 (2022) · Zbl 1499.35730
[8] Chou, S.; Kwak, D. Y.; Wee, K. T., Optimal convergence analysis of an immersed interface finite element method. Adv. Comput. Math., 2, 149-168 (2010) · Zbl 1198.65212
[9] Feng, W.; He, X.-M.; Lin, Y.; Zhang, X., Immersed finite element method for interface problems with algebraic multigrid solver. Commun. Comput. Phys., 4, 1045-1067 (2014) · Zbl 1388.65177
[10] Gong, Y.; Li, B.; Li, Z., Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions. SIAM J. Numer. Anal., 1, 472-495 (2008) · Zbl 1160.65061
[11] Guo, R.; Lin, T.; Lin, Y., Recovering elastic inclusions by shape optimization methods with immersed finite elements. J. Comput. Phys., 109-123 (2020)
[12] Guo, R.; Zhang, X., Solving three-dimensional interface problems with immersed finite elements: a-priori error analysis. J. Comput. Phys. (2021) · Zbl 07513824
[13] He, C.; Zhang, S.; Zhang, X., Error analysis of Petrov-Galerkin immersed finite element methods. Comput. Methods Appl. Mech. Eng. (2023) · Zbl 1536.65144
[14] He, X.-M.; Lin, T.; Lin, Y., A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficients. Commun. Comput. Phys., 1, 185-202 (2009), dedicated to Richard E. Ewing on the occasion of his 60th birthday · Zbl 1364.65225
[15] He, X.-M.; Lin, T.; Lin, Y.; Zhang, X., Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differ. Equ., 2, 619-646 (2013) · Zbl 1266.65165
[16] Ji, H.; Chen, J.; Li, Z., A symmetric and consistent immersed finite element method for interface problems. J. Sci. Comput., 3, 533-557 (2014) · Zbl 1308.65198
[17] Ji, H.; Wang, F.; Chen, J.; Li, Z., A new parameter free partially penalized immersed finite element and the optimal convergence analysis. Numer. Math., 1035-1086 (2022) · Zbl 1492.65313
[18] Li, Z., The immersed interface method using a finite element formulation. Appl. Numer. Math., 3, 253-267 (1998) · Zbl 0936.65091
[19] Lin, T.; Lin, Y.; Zhang, X., Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal., 2, 1121-1144 (2015) · Zbl 1316.65104
[20] Preusser, T.; Rumpf, M.; Sauter, S.; Schwen, L. O., 3D composite finite elements for elliptic boundary value problems with discontinuous coefficients. SIAM J. Sci. Comput., 5, 2115-2143 (2011) · Zbl 1237.65129
[21] Sauter, S. A.; Warnke, R., Composite finite elements for elliptic boundary value problems with discontinuous coefficients. Computing, 1, 29-55 (2006) · Zbl 1284.65173
[22] Vallaghè, S.; Papadopoulo, T., A trilinear immersed finite element method for solving the electroencephalography forward problem. SIAM J. Sci. Comput., 4, 2379-2394 (2010) · Zbl 1214.92046
[23] Adjerid, S.; Ben-Romdhane, M.; Lin, T., Higher degree immersed finite element methods for second-order elliptic interface problems. Int. J. Numer. Anal. Model., 3, 541-566 (2014) · Zbl 1499.65639
[24] Camp, B.; Lin, T.; Lin, Y.; Sun, W., Quadratic immersed finite element spaces and their approximation capabilities. Adv. Comput. Math., 1-4, 81-112 (2006) · Zbl 1095.65102
[25] Guo, R., Design, analysis, and application of immersed finite element methods (2019), Virginia Polytechnic Institute and State University, Ph.D. Dissertation
[26] Guo, R., Solving parabolic moving interface problems with dynamical immersed spaces on unfitted meshes: fully discrete analysis. SIAM J. Numer. Anal., 2, 797-828 (2021) · Zbl 1466.65134
[27] Guo, R.; Lin, T., A higher degree immersed finite element method based on a Cauchy extension for elliptic interface problems. SIAM J. Numer. Anal., 4, 1545-1573 (2019) · Zbl 1420.65122
[28] Guo, R.; Lin, T.; Zhang, X., Nonconforming immersed finite element spaces for elliptic interface problems. Comput. Math. Appl., 6, 2002-2016 (2018) · Zbl 1409.82015
[29] He, X.-M.; Lin, T.; Lin, Y., Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model., 2, 284-301 (2011) · Zbl 1211.65155
[30] Kwak, D.; Jin, S.; Kyeong, D., A stabilized P1-nonconforming immersed finite element method for the interface elasticity problems. ESAIM: Math. Model. Numer. Anal., 1, 187-207 (2017) · Zbl 1381.74199
[31] Li, Z.; Lin, T.; Wu, X., New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math., 1, 61-98 (2003) · Zbl 1055.65130
[32] Lin, T.; Sheen, D.; Zhang, X., A locking-free immersed finite element method for planar elasticity interface problems. J. Comput. Phys., 228-247 (2013) · Zbl 1349.74328
[33] Wang, C.; Sun, P.; Li, Z., An iterative approach for constructing immersed finite element spaces and applications to interface problems. Int. J. Numer. Anal. Model., 2, 167-191 (2019) · Zbl 1408.65090
[34] Wang, J.; Zhang, X.; Zhuang, Q., An immersed Crouzeix-Raviart finite element method for Navier-Stokes equations with moving interfaces. Int. J. Numer. Anal. Model., 563-586 (2022) · Zbl 1513.65470
[35] Bai, J.; Cao, Y.; He, X.-M.; Liu, H.; Yang, X., Modeling and an immersed finite element method for an interface wave equation. Comput. Math. Appl., 7, 1625-1638 (2018) · Zbl 1434.65172
[36] Chu, Y.; Han, D.; Cao, Y.; He, X.-M.; Wang, J., An immersed-finite-element particle-in-cell simulation tool for plasma surface interaction. Int. J. Numer. Anal. Model., 2, 175-200 (2017) · Zbl 1365.76112
[37] D. Han, J. Wang, X.-M. He, PIFE-PIC: a 3-D parallel immersed finite element particle-in-cell framework for plasma simulations, in: AIAA-2018-2196, Proceeding of 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 8-12, 2018.
[38] Han, D.; He, X.-M.; Lund, D.; Zhang, X., PIFE-PIC: parallel immersed-finite-element particle-in-cell for 3-D kinetic simulations of plasma-material interactions. SIAM J. Sci. Comput., 3, C235-C257 (2021) · Zbl 1483.65199
[39] Cao, H.; Cao, Y.; Chu, Y.; He, X.-M.; Lin, T., A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface. Commun. Nonlinear Sci. Numer. Simul., 132-148 (2018) · Zbl 1524.35666
[40] Han, Y.; Xia, G.; Lu, C.; He, X.-M., Trilinear immersed finite element method for 3D anisotropic interface problems with applications to plasma thrusters. AIAA J., 10 (2023)
[41] Jian, H.; Chu, Y.; Cao, H.; Cao, Y.; He, X.-M.; Xia, G., Three-dimensional IFE-PIC numerical simulation of background pressure’s effect on accelerator grid impingement current for ion optics. Vacuum, 130-138 (2015)
[42] Lu, C.; Wan, J.; Cao, Y.; He, X.-M., A fully decoupled iterative method with three-dimensional anisotropic immersed finite elements for Kaufman-type discharge problems. Comput. Methods Appl. Mech. Eng. (2020) · Zbl 1506.65010
[43] Kafafy, R., Immersed finite element Particle-In-Cell simulations of ion propulsion (2005), Virginia Polytechnic Institute and State University, Ph.D. dissertation
[44] Kafafy, R.; Wang, J., A hybrid grid immersed finite element particle-in-cell algorithm for modeling spacecraft-plasma interactions. IEEE Trans. Plasma Sci., 5, 2114-2124 (2006)
[45] Kafafy, R.; Wang, J.; Lin, T., A hybrid-grid immersed-finite-element particle-in-cell simulation model of ion optics plasma dynamics. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 1-16 (2005)
[46] D. Depew, D. Han, J. Wang, X.-M. He, T. Lin, Immersed-Finite-Element Particle-In-Cell simulations of lunar surface charging, 199, in: Proceedings of the 13th Spacecraft Charging Technology Conference, Pasadena, California, June 23-27, 2014.
[47] Han, D.; Wang, J.; He, X.-M., Immersed-finite-element particle-in-cell simulations of plasma charging at lunar terminator. J. Spacecr. Rockets, 6, 1490-1497 (2018)
[48] Han, D.; Wang, P.; He, X.-M.; Lin, T.; Wang, J., A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions. J. Comput. Phys., 965-980 (2016) · Zbl 1349.76212
[49] D. Lund, X.-M. He, D. Han, Charging of irregularly-shaped dust grains near surfaces in space, in: #AIAA 2023-2616, AIAA SciTech 2023 Forum, National Harbor, Maryland & Virtual Conference, January 23-27, 2023.
[50] Lund, D.; He, X.-M.; Han, D., Kinetic particle simulations of plasma charging at lunar craters under severe conditions. J. Spacecr. Rockets, 4, 1176-1187 (2023)
[51] Lund, D.; He, X.-M.; Zhang, X.; Han, D., Weak scaling of the parallel immersed finite element particle-in-cell (PIFE-PIC) framework with lunar plasma charging simulations. Comput. Part. Mech. (2022)
[52] Wang, J.; He, X.-M.; Cao, Y., Modeling spacecraft charging and charged dust particle interactions on lunar surface
[53] Wang, J.; He, X.-M.; Cao, Y., Modeling electrostatic levitation of dusts on lunar surface. IEEE Trans. Plasma Sci., 5, 2459-2466 (2008)
[54] Wang, P., Immersed finite element particle-in-cell modeling of surface charging in rarefied plasmas (2010), Virginia Polytechnic Institute and State University, Ph.D. dissertation
[55] Han, D.; Wang, J.; He, X.-M., A non-homogeneous immersed-finite-element particle-in-cell method for modeling dielectric surface charging in plasmas. IEEE Trans. Plasma Sci., 8, 1326-1332 (2016)
[56] Bai, J.; Cao, Y.; Chu, Y.; Zhang, X., An improved immersed finite element particle-in-cell method for plasma simulation. Comput. Math. Appl., 6, 1887-1899 (2018) · Zbl 1409.82018
[57] Bai, J.; Cao, Y.; He, X.-M.; E, P., An implicit particle-in-cell model based on anisotropic immersed-finite-element method. Comput. Phys. Commun. (2021) · Zbl 1527.76048
[58] Cao, Y.; Chu, Y.; He, X.-M.; Lin, T., An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity. J. Comput. Phys., 82-95 (2015) · Zbl 1351.78045
[59] Chu, Y.; Cao, Y.; He, X.-M.; Luo, M., Asymptotic boundary conditions with immersed finite elements for interface magnetostatic/electrostatic field problems with open boundary. Comput. Phys. Commun., 11, 2331-2338 (2011) · Zbl 1308.78006
[60] Vay, J.-L.; Friedman, A.; Grote, D., Application of adaptive mesh refinement to pic simulations in heavy ion fusion. Nucl. Instrum. Methods Phys. Res., Sect. A, 1-2, 347-352 (2005)
[61] Kolobov, V.; Arslanbekov, R., Electrostatic Pic with Adaptive Cartesian Mesh. J. Phys. Conf. Ser., 012020 (2016), IOP Publishing
[62] Roy, R. S.; Hastings, D.; Gastonis, N., Ion-thruster plume modeling for backflow contamination. J. Spacecr. Rockets, 4, 525-534 (1996)
[63] Fujimoto, K.; Machida, S., Electromagnetic full particle code with adaptive mesh refinement technique: application to the current sheet evolution. J. Comput. Phys., 2, 550-566 (2006) · Zbl 1103.78006
[64] He, X.-M., Bilinear immersed finite elements for interface problems (2009), Virginia Polytechnic Institute and State University, Ph.D. Dissertation
[65] Kafafy, R.; Lin, T.; Lin, Y.; Wang, J., Three-dimensional immersed finite element methods for electric field simulation in composite materials. Int. J. Numer. Methods Eng., 7, 940-972 (2005) · Zbl 1122.78018
[66] Lu, C.; Yang, Z.; Bai, J.; Cao, Y.; He, X.-M., Three-dimensional immersed finite element method for anisotropic magnetostatic/electrostatic interface problems with non-homogeneous flux jump. Int. J. Numer. Methods Eng., 10, 2107-2127 (2020) · Zbl 07843285
[67] He, X.-M.; Lin, T.; Lin, Y., A selective immersed discontinuous Galerkin method for elliptic interface problems. Math. Methods Appl. Sci., 7, 983-1002 (2014) · Zbl 1292.65126
[68] Arnold, D. N., An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 742-760 (1982) · Zbl 0482.65060
[69] Babuska, I., The finite element method with penalty. Math. Comput., 221-228 (1973) · Zbl 0299.65057
[70] He, X.-M.; Lin, T.; Lin, Y., Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient. J. Syst. Sci. Complex., 3, 467-483 (2010), dedicated to David Russell’s 70th birthday · Zbl 1205.35010
[71] Wheeler, M. F., An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal., 152-161 (1978) · Zbl 0384.65058
[72] Naga, A.; Zhang, Z., The polynomial-preserving recovery for higher order finite element methods in 2d and 3d. Discrete Contin. Dyn. Syst., Ser. B, 3, 769 (2005) · Zbl 1078.65108
[73] Guo, H.; Yang, X., Gradient recovery for elliptic interface problem: II. Immersed finite element methods. J. Comput. Phys., 606-619 (2017) · Zbl 1415.65256
[74] Guo, H.; Zhang, Z.; Zhao, R.; Zou, Q., Polynomial preserving recovery on boundary. J. Comput. Appl. Math., 119-133 (2016) · Zbl 1338.65260
[75] He, X.-M.; Lin, T.; Lin, Y., Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differ. Equ., 5, 1265-1300 (2008) · Zbl 1154.65090
[76] He, X.-M.; Lin, T.; Lin, Y., The convergence of the bilinear and linear immersed finite element solutions to interface problems. Numer. Methods Partial Differ. Equ., 1, 312-330 (2012) · Zbl 1241.65090
[77] Naga, A.; Zhang, Z., A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal., 4, 1780-1800 (2004) · Zbl 1078.65098
[78] Zhang, Z.; Naga, A., A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput., 4, 1192-1213 (2005) · Zbl 1078.65110
[79] Liu, H.; Chen, M.; Cai, X.; Cao, Y.; Lapenta, G., A combined immersed finite element and conservative semi-Lagrangian scheme for plasma-material interactions. J. Comput. Phys. (2023) · Zbl 1528.76043
[80] Higham, N. J., Accuracy and Stability of Numerical Algorithms (2002), SIAM · Zbl 1011.65010
[81] Kaganovich, I. D.; Smolyakov, A.; Raitses, Y.; Ahedo, E.; Mikellides, I. G.; Jorns, B.; Taccogna, F.; Gueroult, R.; Tsikata, S.; Bourdon, A., Physics of e× b discharges relevant to plasma propulsion and similar technologies. Phys. Plasmas, 12 (2020)
[82] Hu, Y.; Wang, J., Electron properties in collisionless mesothermal plasma expansion: fully kinetic simulations. IEEE Trans. Plasma Sci., 9, 2832-2838 (2015)
[83] Hu, Y.; Huang, Z.; Cao, Y.; Sun, Q., Kinetic insights into thrust generation and electron transport in a magnetic nozzle. Plasma Sources Sci. Technol., 7 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.