×

Optimal convergence analysis of an immersed interface finite element method. (English) Zbl 1198.65212

Authors’ abstract: We analyze an immersed interface finite element method based on linear polynomials on noninterface triangular elements and piecewise linear polynomials on interface triangular elements. The flux jump condition is weakly enforced on the smooth interface. Optimal error estimates are derived in the broken \(H ^{1}\)-norm and \(L ^{2}\)-norm.

MSC:

65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Babuska, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5, 207–213 (1970) · Zbl 0199.50603 · doi:10.1007/BF02248021
[2] Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundary and interfaces. Adv. Comput. Math. 6, 109–138 (1996) · Zbl 0868.65081 · doi:10.1007/BF02127700
[3] Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring. III. Math. Comp. 51, 415–430 (1988) · Zbl 0701.65070
[4] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002) · Zbl 1012.65115
[5] Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998) · Zbl 0909.65085 · doi:10.1007/s002110050336
[6] Chou, S.H., Kwak, D.Y.: A covolume method based on rotated bilinears for the generalized Stokes problem. SIAM J. Numer. Anal. 35, 494–507 (1998) · Zbl 0957.76027 · doi:10.1137/S0036142996299964
[7] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978) · Zbl 0383.65058
[8] Ciarlet, P.G., Raviart, P.A.: General Lagrange and Hermite interpolation in \(\mathbb{R}\) n with applications to finite element methods. Arch. Rational Mech. Anal. 46, 177–199 (1972) · Zbl 0243.41004 · doi:10.1007/BF00252458
[9] Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO. Anal. Numer. 7, 33–75 (1973) · Zbl 0302.65087
[10] Douglas Jr., J., Santos, J.E., Sheen, D., Ye, X.: Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. M2AN 33, 747–770 (1999) · Zbl 0941.65115 · doi:10.1051/m2an:1999161
[11] Efendiev, Y.R., Wu, X.H.: Multiscale finite element for problems with highly oscillatory coefficients. Numer. Math. 90, 459–486 (2002) · Zbl 0997.65129 · doi:10.1007/s002110100274
[12] Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations. In: Theory and Algorithms. Springer, Berlin (1986) · Zbl 0585.65077
[13] Gong, Y., Li, B., Li, Z.: Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions. SIAM J. Numer. Anal. 46, 472–495 (2008) · Zbl 1160.65061 · doi:10.1137/060666482
[14] Grisvard, P.: Elliptic problems in nonsmooth domains. In: Monographs and Studies in Mathematics, vol. 24. Pitman, Boston (1985) · Zbl 0695.35060
[15] Hou, T., Li, Z., Osher, S., Zhao, H.: A hybrid method for moving interface problems with application to the Hele-Shaw flow. J. Comput. Phys. 134, 236–252 (1997) · Zbl 0888.76067 · doi:10.1006/jcph.1997.5689
[16] Khoromskij, B.N., Wittum, G.: Numerical Solution of Elliptic Differential Equations by Reduction to the Interface. Springer, New York (2004) · Zbl 1043.65128
[17] Ladyzhenskaya, O.A., Rivkind, V. Ja., Ural’ceva, N.N.: The classical solvability of diffraction problems. In: Trudy Mat. Inst. Steklov, vol. 92, pp. 116–146. Translated in Proceedings of the Steklov Institute of Math., no. 92, Boundary Value Problems of Mathematical Physics IV. American Mathematical Society, Providence (1966) · Zbl 0165.11802
[18] LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994) · Zbl 0811.65083 · doi:10.1137/0731054
[19] LeVeque, R.J., Li, Z.: Immersed interface method for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18, 709–735 (1997) · Zbl 0879.76061 · doi:10.1137/S1064827595282532
[20] LeVeque, R.J., Zhang, C.: Immersed interface methods for wave equations with discontinuous coefficients. Wave Motion 25, 237–263 (1997) · Zbl 0915.76084 · doi:10.1016/S0165-2125(97)00046-2
[21] Li, Z.: Immersed interface method for moving interface problems. Numer. Algorithms 14, 269–293 (1997) · Zbl 0886.65096 · doi:10.1023/A:1019173215885
[22] Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35, 230–254 (1998) · Zbl 0915.65121 · doi:10.1137/S0036142995291329
[23] Li, Z., Ito, K.: The Immnersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, p. 176. SIAM, Philadelphia (2006) · Zbl 1122.65096
[24] Li, Z., Lin, T., Lin, Y., Rogers, R.C.: An immersed finite element space and its approximation capability. Numer. Methods Partial Differential Equations 20, 338–367 (2004) · Zbl 1057.65085 · doi:10.1002/num.10092
[25] Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96, 61–98 (2003) · Zbl 1055.65130 · doi:10.1007/s00211-003-0473-x
[26] Lin, T., Lin, Y., Rogers, R., Ryan, M.L.: A rectangular immersed finite element space for interface problems. Adv. Comput. Theory Pract. 7, 107–114 (2001) · Zbl 1019.65092
[27] Ren, X., Wei, J.: On a two-dimensional elliptic problem with large exponent in nonlinearity. Trans. Amer. Math. Soc. 343(2), 749–763 (1994) · Zbl 0804.35042 · doi:10.2307/2154740
[28] Roitberg, J.A., Seftel, Z.G.: A theorem on homeomorphisms for elliptic systems and its applications. Math. USSR-Sb. 7, 439–465 (1969) · Zbl 0191.11903 · doi:10.1070/SM1969v007n03ABEH001099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.