×

Adaptive control of cooperative robots in the presence of disturbances and uncertainties: a Bernstein-Chlodowsky approach. (English) Zbl 1531.93208

MSC:

93C40 Adaptive control/observation systems
93C85 Automated systems (robots, etc.) in control theory
93C73 Perturbations in control/observation systems
Full Text: DOI

References:

[1] J. J.Eid and D.Oleynikov, Cooperative and miniature robotics: potential applications in surgery, Dig. Surg. (2021), 269-273.
[2] B.Li, Y.Ouyang, Y.Zhang, T.Acarman, Q.Kong, and Z.Shao, Optimal cooperative maneuver planning for multiple nonholonomic robots in a tiny environment via adaptive‐scaling constrained optimization, IEEE Robot. Autom. Lett.6 (2021), no. 2, 1511-1518.
[3] S.Makris, Cooperative manipulation—the case of dual arm robots, Coop. Robots Flex. Manufact. (2021), 123-132.
[4] S.Norouzi‐Ghazbi and F.Janabi‐Sharifi, A switching image‐based visual servoing method for cooperative continuum robots, J. Intell. Robot. Syst.103 (2021), no. 3, 42.
[5] L.Poudel, W.Zhou, and Z.Sha, Resource‐constrained scheduling for multi‐robot cooperative three‐dimensional printing, J. Mech. Des.143 (2021), no. 7, 072002‐1‐12.
[6] H.AzizZadeh, M. B.Menhaj, and H. A.Talebi, Model‐based force/position control of cooperative manipulation systems, Automatika60 (2019), no. 1, 113-123.
[7] I. H. B.Pizetta, A. S.Brandão, and M.Sarcinelli‐Filho, Avoiding obstacles in cooperative load transportation, ISA Trans.91 (2019), 253-261.
[8] Y.Chen and Y.Lin, Combining model‐based and model‐free methods for stochastic control of distributed energy resources, Appl. Energy283 (2021), 116204.
[9] B.Hu, Z. H.Guan, F. L.Lewis, and C. P.Chen, Adaptive tracking control of cooperative robot manipulators with Markovian switched couplings, IEEE Trans. Ind. Electron.68 (2020), no. 3, 2427-2436.
[10] Y.Shang, Consensus seeking over Markovian switching networks with time‐varying delays and uncertain topologies, Appl. Math. Comput.273 (2016), 1234-1245. · Zbl 1410.93113
[11] A. T.Khan, S.Li, and X.Cao, Control framework for cooperative robots in smart home using bio‐inspired neural network, Measurement167 (2021), 108253.
[12] J.Wu, Z.Jin, A.Liu, and L.Yu, Vision‐based neural predictive tracking control for multi‐manipulator systems with parametric uncertainty, ISA Trans.110 (2021), 247-257.
[13] M.Farahmandrad, S.Ganjefar, H. A.Talebi, and M.Bayati, Fuzzy sliding mode controller design for a cooperative robotic system with uncertainty for handling an object, J. Dyn. Syst. Meas. Control.141 (2019), no. 6, 061010‐1‐8.
[14] Y.Li, C.Yang, W.Yan, R.Cui, and A.Annamalai, Admittance‐based adaptive cooperative control for multiple manipulators with output constraints, IEEE Trans. Neural Netw. Learn. Syst.30 (2019), no. 12, 3621-3632.
[15] C. L.Hwang, H. B.Abebe, B. S.Chen, and F.Wu, Fuzzy adaptive finite‐time cooperative control with input saturation for nonlinear multiagent systems and its application, IEEE Access8 (2020), 105507-105520.
[16] Y.Shang, Group consensus of multi‐agent systems in directed networks with noises and time delays, Int. J. Syst. Sci.46 (2015), no. 14, 2481-2492. · Zbl 1332.93025
[17] V. T.Ngo and Y. C.Liu, Object transportation with force‐sensorless control and event‐triggered synchronization for networked uncertain manipulators, IEEE Trans. Ind. Electron.68 (2020), no. 1, 902-912.
[18] L.Zhang, Y.Sun, A.Barth, and O.Ma, Decentralized control of multi‐robot system in cooperative object transportation using deep reinforcement learning, IEEE Access8 (2020), 184109-184119.
[19] A.Izadbakhsh, A. A.Kalat, and N.Nikdel, FAT‐based robust adaptive controller design for electrically direct‐driven robots using Phillips q‐Bernstein operators, Robotica40 (2022), no. 10, 3415-3434.
[20] A.Izadbakhsh, I.Zamani, and S.Khorashadizadeh, Szász-Mirakyan‐based adaptive controller design for chaotic synchronization, Int. J. Robust Nonlin. Control31 (2021), no. 5, 1689-1703. · Zbl 1526.93116
[21] A.Izadbakhsh and N.Nikdel, Chaos synchronization using differential equations as extended state observer, Chaos, Solitons Fractals153 (2021), 111433. · Zbl 1498.34173
[22] A.Izadbakhsh, N.Nikdel, and A.Deylami, Cooperative and robust object handling by multiple manipulators based on the differential equation approximator, ISA Trans.128 (2022), 68-80.
[23] R.Zarei and S.Khorashadizadeh, Direct adaptive model‐free control of a class of uncertain nonlinear systems using Legendre polynomials, Trans. Inst. Meas. Control.41 (2019), no. 11, 3081-3091.
[24] A.Deylami and A.Izadbakhsh, FAT‐based robust adaptive control of cooperative multiple manipulators without velocity measurement, Robotica40 (2022), no. 6, 1732-1762.
[25] T.Hamadneh and R.Wisniewski, Algorithm for Bernstein polynomial control design, IFAC‐PapersOnLine51 (2018), no. 16, 283-289.
[26] A.Izadbakhsh and S.Khorashadizadeh, Robust adaptive control of robot manipulators using Bernstein polynomials as universal approximator, Int. J. Robust Nonlin. Control30 (2020), no. 7, 2719-2735. · Zbl 1465.93048
[27] X.Xie, C.Fan, K. W.Kwok, and J.Lam, A Bernstein polynomial approach to estimating reachable set of periodic piecewise polynomial systems, IEEE Trans. Autom. Control66 (2020), no. 10, 4812-4819. · Zbl 1536.93062
[28] I.Chlodowsky, Sur le development des fonctions defines dansun interval infinien series de polynomes de S.N.Bernstein, Compos. Math.4 (1937), 380-392. · JFM 63.0237.01
[29] U.Abel and H.Karsli, A complete asymptotic expansion for Bernstein-Chlodovsky polynomials for functions on R, Mediterr. J. Math.17 (2020), no. 6, 201. · Zbl 1468.41008
[30] E.Ibikli, Approximation by Bernstein‐Chlodowsky polynomials, Hacet. J. Math. Stat.32 (2003), 1-5. · Zbl 1078.41017
[31] F.Usta, Approximation of functions by a new construction of Bernstein‐Chlodowsky operators: theory and applications, Numer. Methods Partial Differ. Equ.37 (2021), no. 1, 782-795. · Zbl 07777722
[32] J. H.Jean and L. C.Fu, An adaptive control scheme for coordinated multimanipulator systems, IEEE Trans. Robot. Autom.9 (1993), no. 2, 226-231.
[33] G.Song and L.Cai, A smooth robust control approach to cooperation of multiple robot manipulators, In Proceedings of 1995 American control conference‐ACC’95, Vol. 2, IEEE, 1995, 1382-1386.
[34] M. W.Spong and M.Vidyasagar, Robot dynamics and control, John Wiley & Sons, 2008.
[35] A. C.Huang and M. C.Chien, Adaptive control of robot manipulators: a unified regressor‐free approach, World Scientific, 2010. · Zbl 1204.93002
[36] F. L.Lewis, C. T.Abdallah, and D. M.Dawson, Control of robot. Manipulators, Editorial Maxwell McMillan, Canada, 1993, 25-36.
[37] B.Yao and M.Tomizuka, Adaptive coordinated control of multiple manipulators handling a constrained object, In [1993] Proceedings IEEE International Conference on Robotics and Automation, IEEE, 1993, 624-629.
[38] L. C.Woon, S. S.Ge, X. Q.Chen, and C.Zhang, Adaptive neural network control of coordinated manipulators, J. Robot. Syst.16 (1999), no. 4, 195-211. · Zbl 0940.70005
[39] T.Burg, D.Dawson, J.Hu, and M.De Queiroz, An adaptive partial state‐feedback controller for RLED robot manipulators, IEEE Trans. Autom. Control41 (1996), no. 7, 1024-1030. · Zbl 0875.93294
[40] Y.Shang, Resilient group consensus in heterogeneously robust networks with hybrid dynamics, Math. Methods Appl. Sci.44 (2021), no. 2, 1456-1469. · Zbl 1469.93097
[41] J. J. E.Slotine and W.Li, Applied nonlinear control, Vol. 199, No. 1, Prentice Hall, Englewood Cliffs, NJ, 1991, 705. · Zbl 0753.93036
[42] Gallier, J., & Quaintance, J. (2019). Linear algebra for computer vision, robotics, and machine learning.
[43] H.Berghuis and H.Nijmeijer, Robust control of robots via linear estimated state feedback, IEEE Trans. Autom. Control39 (1994), no. 10, 2159-2162. · Zbl 0925.93204
[44] Z.Liu, C.Chen, Y.Zhang, and C. P.Chen, Adaptive neural control for dual‐arm coordination of humanoid robot with unknown nonlinearities in output mechanism, IEEE Trans. Cybern.45 (2014), no. 3, 507-518.
[45] M.Uchiyama and P.Dauchez, A symmetric hybrid position/force control scheme for the coordination of two robots, In Proceedings. 1988 IEEE international conference on robotics and automation, IEEE, 1988, 350-356.
[46] J. C.Patra and A. C.Kot, Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks, IEEE Trans. Syst. Man Cybern. B, Cybern.32 (2002), no. 4, 505-511.
[47] S.Purwar, I. N.Kar, and A. N.Jha, Adaptive output feedback tracking control of robot manipulators using position measurements only, Expert Syst. Appl.34 (2008), no. 4, 2789-2798.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.