×

Nonsmooth calculus. (English) Zbl 1124.28003

Author’s abstract: We survey recent advances in analysis and geometry, where first-order differential analysis has been extended beyond its classical smooth settings. Such studies have applications to geometric rigidity questions, but are also of intrinsic interest. The transition from smooth spaces to singular spaces where calculus is possible parallels the classical development from smooth functions to functions with weak or generalized derivatives. Moreover, there is a new way of looking at the classical geometric theory of Sobolev functions that is useful in more general contexts.

MSC:

28A75 Length, area, volume, other geometric measure theory
49J52 Nonsmooth analysis
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
51-02 Research exposition (monographs, survey articles) pertaining to geometry
Full Text: DOI

References:

[1] Geometry. IV, Encyclopaedia of Mathematical Sciences, vol. 70, Springer-Verlag, Berlin, 1993. Nonregular Riemannian geometry; A translation of Geometry, 4 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [ MR1099201 (91k:53003)]; Translation by E. Primrose.
[2] Rob Kirby , Problems in low-dimensional topology, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 35 – 473.
[3] David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. · Zbl 0545.31011
[4] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. · Zbl 0314.46030
[5] Lars Ahlfors and Arne Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101 – 129. · Zbl 0041.20301 · doi:10.1007/BF02392634
[6] A. D. Aleksandrov and V. A. Zalgaller, Intrinsic geometry of surfaces, Translated from the Russian by J. M. Danskin. Translations of Mathematical Monographs, Vol. 15, American Mathematical Society, Providence, R.I., 1967. · Zbl 0146.44103
[7] Luigi Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 3, 439 – 478. · Zbl 0724.49027
[8] Luigi Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), no. 1, 51 – 67. · Zbl 1002.28004 · doi:10.1006/aima.2000.1963
[9] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. · Zbl 1090.35002
[10] Luigi Ambrosio and Bernd Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), no. 1, 1 – 80. · Zbl 0984.49025 · doi:10.1007/BF02392711
[11] L. Ambrosio, M. Miranda Jr., and D. Pallara, Special functions of bounded variation in doubling metric measure spaces, Calculus of variations: topics from the mathematical heritage of E. De Giorgi, Quad. Mat., vol. 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004, pp. 1 – 45. · Zbl 1089.49039
[12] Luigi Ambrosio and Francesco Serra Cassano , Lectures notes on analysis in metric spaces, Appunti dei Corsi Tenuti da Docenti della Scuola. [Notes of Courses Given by Teachers at the School], Scuola Normale Superiore, Pisa, 2000. Papers from the International Summer School held in Trento, May 1999. · Zbl 1048.00021
[13] Luigi Ambrosio and Paolo Tilli, Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, vol. 25, Oxford University Press, Oxford, 2004. · Zbl 1080.28001
[14] Patrice Assouad, Plongements lipschitziens dans \?\(^{n}\), Bull. Soc. Math. France 111 (1983), no. 4, 429 – 448 (French, with English summary). · Zbl 0597.54015
[15] Kari Astala, Mario Bonk, and Juha Heinonen, Quasiconformal mappings with Sobolev boundary values, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), no. 3, 687 – 731. · Zbl 1170.30307
[16] Pascal Auscher, Thierry Coulhon, and Alexander Grigor’yan , Heat kernels and analysis on manifolds, graphs, and metric spaces, Contemporary Mathematics, vol. 338, American Mathematical Society, Providence, RI, 2003. Lecture notes from a Quarter Program on Heat Kernels, Random Walks, and Analysis on Manifolds and Graphs held in Paris, April 16 – July 13, 2002. · Zbl 1029.00030
[17] Zoltán M. Balogh and Pekka Koskela, Quasiconformality, quasisymmetry, and removability in Loewner spaces, Duke Math. J. 101 (2000), no. 3, 554 – 577. With an appendix by Jussi Väisälä. · Zbl 1072.30503
[18] Zoltán M. Balogh and Stephen M. Buckley, Geometric characterizations of Gromov hyperbolicity, Invent. Math. 153 (2003), no. 2, 261 – 301. · Zbl 1059.30038 · doi:10.1007/s00222-003-0287-6
[19] Z. M. Balogh, P. Koskela, and S. Rogovin, Absolute continuity of quasiconformal mappings on curves, Geometric and Functional Analysis (to appear). · Zbl 1134.30014
[20] Zoltán M. Balogh, Kevin Rogovin, and Thomas Zürcher, The Stepanov differentiability theorem in metric measure spaces, J. Geom. Anal. 14 (2004), no. 3, 405 – 422. · Zbl 1069.28001 · doi:10.1007/BF02922098
[21] D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, vol. 200, Springer-Verlag, New York, 2000. · Zbl 0954.53001
[22] André Bellaïche, The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 1 – 78. · Zbl 0862.53031 · doi:10.1007/978-3-0348-9210-0_1
[23] Arne Beurling, The collected works of Arne Beurling. Vol. 1, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1989. Complex analysis; Edited by L. Carleson, P. Malliavin, J. Neuberger and J. Wermer. Arne Beurling, The collected works of Arne Beurling. Vol. 2, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1989. Harmonic analysis; Edited by L. Carleson, P. Malliavin, J. Neuberger and J. Wermer. · Zbl 0732.01042
[24] Anders Björn, Jana Björn, and Nageswari Shanmugalingam, The Dirichlet problem for \?-harmonic functions on metric spaces, J. Reine Angew. Math. 556 (2003), 173 – 203. · Zbl 1018.31004 · doi:10.1515/crll.2003.020
[25] Anders Björn, Jana Björn, and Nageswari Shanmugalingam, The Perron method for \?-harmonic functions in metric spaces, J. Differential Equations 195 (2003), no. 2, 398 – 429. · Zbl 1039.35033 · doi:10.1016/S0022-0396(03)00188-8
[26] M. Bonk, Quasiconformal geometry of fractals, ICM Proceedings, Madrid (2006). · Zbl 1102.30016
[27] Mario Bonk, Juha Heinonen, and Pekka Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001), viii+99. · Zbl 0970.30010
[28] Mario Bonk and Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127 – 183. · Zbl 1037.53023 · doi:10.1007/s00222-002-0233-z
[29] Mario Bonk and Bruce Kleiner, Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002), no. 1, 81 – 106. · Zbl 1044.37015
[30] Mario Bonk and Bruce Kleiner, Rigidity for quasi-Fuchsian actions on negatively curved spaces, Int. Math. Res. Not. 61 (2004), 3309 – 3316. · Zbl 1156.53311 · doi:10.1155/S1073792804141998
[31] Mario Bonk and Bruce Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219 – 246. · Zbl 1087.20033 · doi:10.2140/gt.2005.9.219
[32] Mario Bonk and Urs Lang, Bi-Lipschitz parameterization of surfaces, Math. Ann. 327 (2003), no. 1, 135 – 169. · Zbl 1042.53044 · doi:10.1007/s00208-003-0443-8
[33] Nicolas Bourbaki, Elements of the history of mathematics, Springer-Verlag, Berlin, 1994. Translated from the 1984 French original by John Meldrum. · Zbl 0803.01002
[34] M. Bourdon, Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal. 7 (1997), no. 2, 245 – 268 (French, with English and French summaries). · Zbl 0876.53020 · doi:10.1007/PL00001619
[35] Marc Bourdon and Hervé Pajot, Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc. 127 (1999), no. 8, 2315 – 2324. · Zbl 0924.30030
[36] Marc Bourdon and Hervé Pajot, Cohomologie \?_{\?} et espaces de Besov, J. Reine Angew. Math. 558 (2003), 85 – 108 (French, with English summary). · Zbl 1044.20026 · doi:10.1515/crll.2003.043
[37] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. · Zbl 0988.53001
[38] A. Bruckner, J. Bruckner, and B. Thomson, Real analysis, Prentice-Hall, NJ, 1997. · Zbl 0872.26001
[39] J. Bryant, S. Ferry, W. Mio, and S. Weinberger, Topology of homology manifolds, Ann. of Math. (2) 143 (1996), no. 3, 435 – 467. · Zbl 0867.57016 · doi:10.2307/2118532
[40] Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. · Zbl 1232.53037
[41] Peter Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213 – 230. · Zbl 0501.53030
[42] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428 – 517. · Zbl 0942.58018 · doi:10.1007/s000390050094
[43] H. O. Hartley, The probability integral of the range in samples of \? observations from a normal population. II. Numerical evaluation of the probability integral, Biometrika 32 (1942), 309 – 310. · doi:10.1093/biomet/32.3-4.309
[44] J. Cheeger, Integral bounds on curvature elliptic estimates and rectifiability of singular sets, Geom. Funct. Anal. 13 (2003), no. 1, 20 – 72. · Zbl 1086.53051 · doi:10.1007/s000390300001
[45] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406 – 480. · Zbl 0902.53034
[46] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), no. 1, 13 – 35. · Zbl 1027.53042
[47] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 54 (2000), no. 1, 37 – 74. · Zbl 1027.53043
[48] J. Cheeger, T. H. Colding, and G. Tian, On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal. 12 (2002), no. 5, 873 – 914. · Zbl 1030.53046 · doi:10.1007/PL00012649
[49] Jeff Cheeger and Detlef Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119 – 128. · Zbl 0223.53033
[50] Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. · Zbl 0224.43006
[51] Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569 – 645. · Zbl 0358.30023
[52] Tobias H. Colding and William P. Minicozzi II, Harmonic functions on manifolds, Ann. of Math. (2) 146 (1997), no. 3, 725 – 747. · Zbl 0928.53030 · doi:10.2307/2952459
[53] Alain Connes, Dennis Sullivan, and Nicolas Teleman, Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes, Topology 33 (1994), no. 4, 663 – 681. · Zbl 0840.57013 · doi:10.1016/0040-9383(94)90003-5
[54] Robert J. Daverman, Decompositions of manifolds, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. · Zbl 0608.57002
[55] Guy David and Stephen Semmes, Strong \?_{\infty } weights, Sobolev inequalities and quasiconformal mappings, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 101 – 111. · Zbl 0752.46014
[56] Guy David and Stephen Semmes, Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications, vol. 7, The Clarendon Press, Oxford University Press, New York, 1997. Self-similar geometry through metric and measure. · Zbl 0887.54001
[57] S. K. Donaldson and D. P. Sullivan, Quasiconformal 4-manifolds, Acta Math. 163 (1989), no. 3-4, 181 – 252. · Zbl 0704.57008 · doi:10.1007/BF02392736
[58] J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. · Zbl 0549.31001
[59] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral theory. Selfadjoint operators in Hilbert space; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1963 original; A Wiley-Interscience Publication. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part III, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral operators; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1971 original; A Wiley-Interscience Publication. · Zbl 0635.47002
[60] Robert D. Edwards, The topology of manifolds and cell-like maps, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 111 – 127.
[61] J. Eells and B. Fuglede, Harmonic maps between Riemannian polyhedra, Cambridge Tracts in Mathematics, vol. 142, Cambridge University Press, Cambridge, 2001. With a preface by M. Gromov. · Zbl 0979.31001
[62] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. · Zbl 0804.28001
[63] Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77 – 116. · Zbl 0498.35042 · doi:10.1080/03605308208820218
[64] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[65] B. Franchi, P. Hajłasz, and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 6, 1903 – 1924. · Zbl 0938.46037
[66] Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357 – 453. · Zbl 0528.57011
[67] Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. · Zbl 0705.57001
[68] Joseph H. G. Fu, Bi-Lipschitz rough normal coordinates for surfaces with an \?\textonesuperior curvature bound, Indiana Univ. Math. J. 47 (1998), no. 2, 439 – 453. · Zbl 0942.53007 · doi:10.1512/iumj.1998.47.1527
[69] Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171 – 219. · Zbl 0079.27703 · doi:10.1007/BF02404474
[70] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[71] S. M. Gersten , Essays in group theory, Mathematical Sciences Research Institute Publications, vol. 8, Springer-Verlag, New York, 1987. · Zbl 0626.00014
[72] Mikhael Gromov, Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79 – 323. · Zbl 0864.53025
[73] Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. · Zbl 0953.53002
[74] M. Gromov and P. Pansu, Rigidity of lattices: an introduction, Geometric topology: recent developments (Montecatini Terme, 1990) Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 39 – 137. · Zbl 0786.22015 · doi:10.1007/BFb0094289
[75] M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), no. 1, 1 – 12. · Zbl 0646.53037 · doi:10.1007/BF01404671
[76] Peter Haïssinsky, Rigidity and expansion for rational maps, J. London Math. Soc. (2) 63 (2001), no. 1, 128 – 140. · Zbl 1106.37305 · doi:10.1112/S0024610700001563
[77] Piotr Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no. 4, 403 – 415. · Zbl 0859.46022 · doi:10.1007/BF00275475
[78] Piotr Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002) Contemp. Math., vol. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 173 – 218. · Zbl 1048.46033 · doi:10.1090/conm/338/06074
[79] Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. · Zbl 0954.46022 · doi:10.1090/memo/0688
[80] Piotr Hajłasz and Olli Martio, Traces of Sobolev functions on fractal type sets and characterization of extension domains, J. Funct. Anal. 143 (1997), no. 1, 221 – 246. · Zbl 0877.46025 · doi:10.1006/jfan.1996.2959
[81] Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. · Zbl 0985.46008
[82] Juha Heinonen, The branch set of a quasiregular mapping, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 691 – 700. · Zbl 1005.30019
[83] Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. · Zbl 0780.31001
[84] Juha Heinonen and Pekka Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), no. 1, 61 – 79. · Zbl 0832.30013 · doi:10.1007/BF01241122
[85] Juha Heinonen and Pekka Koskela, From local to global in quasiconformal structures, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), no. 2, 554 – 556. · Zbl 0842.30016 · doi:10.1073/pnas.93.2.554
[86] Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1 – 61. · Zbl 0915.30018 · doi:10.1007/BF02392747
[87] Juha Heinonen and Pekka Koskela, A note on Lipschitz functions, upper gradients, and the Poincaré inequality, New Zealand J. Math. 28 (1999), no. 1, 37 – 42. · Zbl 1015.46020
[88] Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87 – 139. · Zbl 1013.46023 · doi:10.1007/BF02788076
[89] Juha Heinonen and Seppo Rickman, Geometric branched covers between generalized manifolds, Duke Math. J. 113 (2002), no. 3, 465 – 529. · Zbl 1017.30023 · doi:10.1215/S0012-7094-02-11333-7
[90] Juha Heinonen and Dennis Sullivan, On the locally branched Euclidean metric gauge, Duke Math. J. 114 (2002), no. 1, 15 – 41. · Zbl 1019.58002 · doi:10.1215/S0012-7094-02-11412-4
[91] Ernst Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23 – 34. · Zbl 0273.53042 · doi:10.1007/BF01344139
[92] David A. Herron, Conformal deformations of uniform Loewner spaces, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 2, 325 – 360. · Zbl 1046.30027 · doi:10.1017/S0305004103007199
[93] Francis Hirsch and Gilles Lacombe, Elements of functional analysis, Graduate Texts in Mathematics, vol. 192, Springer-Verlag, New York, 1999. Translated from the 1997 French original by Silvio Levy. · Zbl 0924.46001
[94] Tadeusz Iwaniec, The Gehring lemma, Quasiconformal mappings and analysis (Ann Arbor, MI, 1995) Springer, New York, 1998, pp. 181 – 204. · Zbl 0888.30017
[95] David Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53 (1986), no. 2, 503 – 523. · Zbl 0614.35066 · doi:10.1215/S0012-7094-86-05329-9
[96] Sari Kallunki and Pekka Koskela, Exceptional sets for the definition of quasiconformality, Amer. J. Math. 122 (2000), no. 4, 735 – 743. · Zbl 0954.30008
[97] Sari Kallunki and Nageswari Shanmugalingam, Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 455 – 464. · Zbl 1002.31004
[98] Michael Kapovich and Bruce Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 647 – 669 (English, with English and French summaries). · Zbl 0989.20031 · doi:10.1016/S0012-9593(00)01049-1
[99] Stephen Keith, Modulus and the Poincaré inequality on metric measure spaces, Math. Z. 245 (2003), no. 2, 255 – 292. · Zbl 1037.31009 · doi:10.1007/s00209-003-0542-y
[100] Stephen Keith, A differentiable structure for metric measure spaces, Adv. Math. 183 (2004), no. 2, 271 – 315. · Zbl 1077.46027 · doi:10.1016/S0001-8708(03)00089-6
[101] Stephen Keith, Measurable differentiable structures and the Poincaré inequality, Indiana Univ. Math. J. 53 (2004), no. 4, 1127 – 1150. · Zbl 1088.53030 · doi:10.1512/iumj.2004.53.2417
[102] S. Keith and T. Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), no. 6, 1278 – 1321. · Zbl 1108.28008 · doi:10.1007/s00039-004-0492-5
[103] Stephen Keith and Kai Rajala, A remark on Poincaré inequalities on metric measure spaces, Math. Scand. 95 (2004), no. 2, 299 – 304. · Zbl 1070.31003 · doi:10.7146/math.scand.a-14461
[104] S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, Annals of Mathematics (to appear). · Zbl 1180.46025
[105] Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. · Zbl 0998.28004
[106] Tero Kilpeläinen, A remark on the uniqueness of quasi continuous functions, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 261 – 262. · Zbl 0919.31006
[107] Juha Kinnunen and Olli Martio, Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 459 – 490. · Zbl 1035.31007
[108] Juha Kinnunen and Olli Martio, Sobolev space properties of superharmonic functions on metric spaces, Results Math. 44 (2003), no. 1-2, 114 – 129. · Zbl 1042.31005 · doi:10.1007/BF03322918
[109] Juha Kinnunen and Nageswari Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), no. 3, 401 – 423. · Zbl 1006.49027 · doi:10.1007/s002290100193
[110] Juha Kinnunen and Nageswari Shanmugalingam, Polar sets on metric spaces, Trans. Amer. Math. Soc. 358 (2006), no. 1, 11 – 37. · Zbl 1078.31008
[111] B. Kleiner, The asymptotic geometry of negatively curved spaces: uniformization, geome- trization and rigidity, ICM Proceedings, Madrid (2006). · Zbl 1108.30014
[112] Nicholas J. Korevaar and Richard M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), no. 3-4, 561 – 659. · Zbl 0862.58004 · doi:10.4310/CAG.1993.v1.n4.a4
[113] Pekka Koskela, Removable sets for Sobolev spaces, Ark. Mat. 37 (1999), no. 2, 291 – 304. · Zbl 1070.46502 · doi:10.1007/BF02412216
[114] Pekka Koskela, Upper gradients and Poincaré inequalities, Lecture notes on analysis in metric spaces (Trento, 1999) Appunti Corsi Tenuti Docenti Sc., Scuola Norm. Sup., Pisa, 2000, pp. 55 – 69. · Zbl 1075.46030
[115] Pekka Koskela, Sobolev spaces and quasiconformal mappings on metric spaces, European Congress of Mathematics, Vol. I (Barcelona, 2000) Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 457 – 467. · Zbl 1022.30021
[116] Pekka Koskela and Paul MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), no. 1, 1 – 17. · Zbl 0918.30011
[117] Pekka Koskela, Kai Rajala, and Nageswari Shanmugalingam, Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces, J. Funct. Anal. 202 (2003), no. 1, 147 – 173. · Zbl 1027.31006 · doi:10.1016/S0022-1236(02)00090-3
[118] P. Koskela, N. Shanmugalingam, and H. Tuominen, Removable sets for the Poincaré inequality on metric spaces, Indiana Univ. Math. J. 49 (2000), no. 1, 333 – 352. · Zbl 0958.30008 · doi:10.1512/iumj.2000.49.1719
[119] Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Dirichlet forms, Poincaré inequalities, and the Sobolev spaces of Korevaar and Schoen, Potential Anal. 21 (2004), no. 3, 241 – 262. · Zbl 1088.31005 · doi:10.1023/B:POTA.0000033331.88514.6e
[120] Kazuhiro Kuwae, Yoshiroh Machigashira, and Takashi Shioya, Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), no. 2, 269 – 316. · Zbl 1001.53017 · doi:10.1007/s002090100252
[121] T. J. Laakso, Ahlfors \?-regular spaces with arbitrary \?>1 admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000), no. 1, 111 – 123. · Zbl 0962.30006 · doi:10.1007/s000390050003
[122] Jean-François Lafont, Rigidity result for certain three-dimensional singular spaces and their fundamental groups, Geom. Dedicata 109 (2004), 197 – 219. · Zbl 1076.57020 · doi:10.1007/s10711-004-1526-8
[123] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. · Zbl 0253.31001
[124] D. G. Larman, A new theory of dimension, Proc. London Math. Soc. (3) 17 (1967), 178 – 192. · Zbl 0152.24502 · doi:10.1112/plms/s3-17.1.178
[125] James R. Lee, Manor Mendel, and Assaf Naor, Metric structures in \?\(_{1}\): dimension, snowflakes, and average distortion, European J. Combin. 26 (2005), no. 8, 1180 – 1190. · Zbl 1106.68086 · doi:10.1016/j.ejc.2004.07.002
[126] B. Levi, Sul principio di Dirichlet, Rend. Circ. Mat. Palermo 22 (1906), 293-359. · JFM 37.0414.04
[127] Genadi Levin and Sebastian van Strien, Bounds for maps of an interval with one critical point of inflection type. II, Invent. Math. 141 (2000), no. 2, 399 – 465. · Zbl 0986.37027 · doi:10.1007/s002220000075
[128] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Annals of Mathematics (to appear). · Zbl 1178.53038
[129] -, Weak curvature conditions and functional inequalities, Journal of Functional Analysis (to appear). · Zbl 1119.53028
[130] Jouni Luukkainen and Eero Saksman, Every complete doubling metric space carries a doubling measure, Proc. Amer. Math. Soc. 126 (1998), no. 2, 531 – 534. · Zbl 0897.28007
[131] J. Luukkainen and J. Väisälä, Elements of Lipschitz topology, Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), no. 1, 85 – 122. · Zbl 0397.57011 · doi:10.5186/aasfm.1977.0315
[132] Jan Malý and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI, 1997. · Zbl 0882.35001
[133] Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. · Zbl 0819.28004
[134] Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova.
[135] John Mitchell, On Carnot-Carathéodory metrics, J. Differential Geom. 21 (1985), no. 1, 35 – 45. · Zbl 0554.53023
[136] Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0142.38701
[137] G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. · Zbl 0265.53039
[138] G. D. Mostow, A remark on quasiconformal mappings on Carnot groups, Michigan Math. J. 41 (1994), no. 1, 31 – 37. · Zbl 0898.22006 · doi:10.1307/mmj/1029004912
[139] F. Nazarov, S. Treil, and A. Volberg, The \?\?-theorem on non-homogeneous spaces, Acta Math. 190 (2003), no. 2, 151 – 239. · Zbl 1065.42014 · doi:10.1007/BF02392690
[140] Shin-ichi Ohta, Cheeger type Sobolev spaces for metric space targets, Potential Anal. 20 (2004), no. 2, 149 – 175. · Zbl 1047.46026 · doi:10.1023/A:1026359313080
[141] Shin-ichi Ohta, Harmonic maps and totally geodesic maps between metric spaces, Tohoku Mathematical Publications, vol. 28, Tohoku University, Mathematical Institute, Sendai, 2004. Dissertation, Tohoku University, Sendai, 2004. · Zbl 1144.53300
[142] Pierre Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177 – 212 (French, with English summary). · Zbl 0722.53028 · doi:10.5186/aasfm.1989.1424
[143] Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1 – 60 (French, with English summary). · Zbl 0678.53042 · doi:10.2307/1971484
[144] Conrad Plaut, Metric spaces of curvature \ge \?, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 819 – 898. · Zbl 1011.57002
[145] Hans Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919), no. 4, 340 – 359 (German). · JFM 47.0243.01 · doi:10.1007/BF01498415
[146] K. Rajala, Alexandrov-avaruudet, ylägradientit ja Poincarén epäyhtälö (in Finnish), Pro gradu -tutkielma. Jyväskylän yliopisto (2000), 1-41.
[147] Yu. G. Reshetnyak, Sobolev classes of functions with values in a metric space, Sibirsk. Mat. Zh. 38 (1997), no. 3, 657 – 675, iii – iv (Russian, with Russian summary); English transl., Siberian Math. J. 38 (1997), no. 3, 567 – 583. · Zbl 0944.46024 · doi:10.1007/BF02683844
[148] Yu. G. Reshetnyak, On the conformal representation of Alexandrov surfaces, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 287 – 304. · Zbl 1021.53041
[149] Juha Rissanen, Wavelets on self-similar sets and the structure of the spaces \?^{1,\?}(\?,\?), Ann. Acad. Sci. Fenn. Math. Diss. 125 (2002), 46. Dissertation, University of Jyväskylä, Jyväskylä, 2002. · Zbl 0993.42016
[150] Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. · Zbl 0867.46001
[151] Stanisław Saks, Theory of the integral, Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach, Dover Publications, Inc., New York, 1964. · Zbl 1196.28001
[152] Laurent Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), no. 2, 417 – 450. · Zbl 0735.58032
[153] L. Schwartz, Théorie des distributions. Tome I, Actualités Sci. Ind., no. 1091 = Publ. Inst. Math. Univ. Strasbourg 9, Hermann & Cie., Paris, 1950 (French). · Zbl 0037.07301
[154] Stephen W. Semmes, Finding structure in sets with little smoothness, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 875 – 885. · Zbl 0897.28003
[155] S. Semmes, Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), no. 2, 155 – 295. · Zbl 0870.54031 · doi:10.1007/BF01587936
[156] Stephen Semmes, Good metric spaces without good parameterizations, Rev. Mat. Iberoamericana 12 (1996), no. 1, 187 – 275. · Zbl 0854.57018 · doi:10.4171/RMI/198
[157] Stephen Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about \?_{\infty }-weights, Rev. Mat. Iberoamericana 12 (1996), no. 2, 337 – 410. · Zbl 0858.46017 · doi:10.4171/RMI/201
[158] Stephen Semmes, Mappings and spaces, Quasiconformal mappings and analysis (Ann Arbor, MI, 1995) Springer, New York, 1998, pp. 347 – 368. · Zbl 0898.30016
[159] Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. · Zbl 0953.53002
[160] Stephen Semmes, Some novel types of fractal geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. · Zbl 0970.28001
[161] Stephen Semmes, Some topics concerning homeomorphic parameterizations, Publ. Mat. 45 (2001), no. 1, 3 – 67. · Zbl 1053.57014 · doi:10.5565/PUBLMAT_45101_01
[162] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Ph.D. thesis, University of Michigan, 1999. · Zbl 0974.46038
[163] Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243 – 279. · Zbl 0974.46038 · doi:10.4171/RMI/275
[164] Nageswari Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), no. 3, 1021 – 1050. · Zbl 0989.31003
[165] Nageswari Shanmugalingam, Some convergence results for \?-harmonic functions on metric measure spaces, Proc. London Math. Soc. (3) 87 (2003), no. 1, 226 – 246. · Zbl 1034.31006 · doi:10.1112/S0024611503014151
[166] L. Siebenmann and D. Sullivan, On complexes that are Lipschitz manifolds, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 503 – 525. · Zbl 0478.57008
[167] S. L. Sobolev, On some estimates relating to families of functions having derivatives that are square integrable, Dokl. Akad. Nauk SSSR 1 (1936), 267-270 (in Russian).
[168] -, On a theorem in functional analysis, Math. Sb. 4 (1938), 471-497 (in Russian).
[169] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, vol. 90, American Mathematical Society, Providence, RI, 1991. Translated from the third Russian edition by Harold H. McFaden; With comments by V. P. Palamodov. · Zbl 0732.46001
[170] Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. Michael Spivak, A comprehensive introduction to differential geometry. Vol. II, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. Michael Spivak, A comprehensive introduction to differential geometry. Vol. III, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. Michael Spivak, A comprehensive introduction to differential geometry. Vol. IV, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. Michael Spivak, A comprehensive introduction to differential geometry. Vol. V, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979.
[171] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[172] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. · Zbl 0821.42001
[173] Karl-Theodor Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65 – 131. , https://doi.org/10.1007/s11511-006-0002-8 Karl-Theodor Sturm, On the geometry of metric measure spaces. II, Acta Math. 196 (2006), no. 1, 133 – 177. · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[174] Karl-Theodor Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65 – 131. , https://doi.org/10.1007/s11511-006-0002-8 Karl-Theodor Sturm, On the geometry of metric measure spaces. II, Acta Math. 196 (2006), no. 1, 133 – 177. · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[175] Dennis Sullivan, Hyperbolic geometry and homeomorphisms, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 543 – 555.
[176] Dennis Sullivan, Exterior \?, the local degree, and smoothability, Prospects in topology (Princeton, NJ, 1994) Ann. of Math. Stud., vol. 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 328 – 338. · Zbl 0926.57027
[177] L. Tonelli, Sulla quadratura delle superficie, Atti Reale Accad. Lincei 3 (1926), 633-638. · JFM 52.0251.03
[178] Tatiana Toro, Surfaces with generalized second fundamental form in \?² are Lipschitz manifolds, J. Differential Geom. 39 (1994), no. 1, 65 – 101. · Zbl 0806.53020
[179] Tatiana Toro, Geometric conditions and existence of bi-Lipschitz parameterizations, Duke Math. J. 77 (1995), no. 1, 193 – 227. · Zbl 0847.42011 · doi:10.1215/S0012-7094-95-07708-4
[180] Hans Triebel, The structure of functions, Monographs in Mathematics, vol. 97, Birkhäuser Verlag, Basel, 2001. · Zbl 0984.46021
[181] P. Tukia and J. Väisälä, Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 2, 303 – 342 (1982). · Zbl 0448.30021 · doi:10.5186/aasfm.1981.0626
[182] Jeremy Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 2, 525 – 548. · Zbl 0910.30022
[183] Jeremy T. Tyson, Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn. 5 (2001), 21 – 73. · Zbl 0981.30015
[184] Nicolas Th. Varopoulos, Fonctions harmoniques sur les groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 17, 519 – 521 (French, with English summary). · Zbl 0614.22002
[185] A. L. Vol\(^{\prime}\)berg and S. V. Konyagin, On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 666 – 675 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 629 – 638. · Zbl 0649.42010
[186] M.-K. von Renesse, On local Poincaré via transportation, Mathematische Zeitschrift (to appear). · Zbl 1141.53076
[187] Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. · Zbl 0936.46002
[188] Nik Weaver, Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal. 178 (2000), no. 1, 64 – 112. , https://doi.org/10.1006/jfan.2000.3637 Nik Weaver, Erratum: ”Lipschitz algebras and derivations. II. Exterior differentiation”, J. Funct. Anal. 186 (2001), no. 2, 546. · doi:10.1006/jfan.2001.3873
[189] Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. · Zbl 0083.28204
[190] Jang-Mei Wu, Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc. 126 (1998), no. 5, 1453 – 1459. · Zbl 0897.28008
[191] Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980.
[192] William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.