×

Heat kernel coefficients for massive gravity. (English) Zbl 07906060

Summary: We compute the heat kernel coefficients that are needed for the regularization and renormalization of massive gravity. Starting from the Stueckelberg action for massive gravity, we determine the propagators of the different fields (massive tensor, vector and scalar) in a general linear covariant gauge depending on four free gauge parameters. We then compute the non-minimal heat kernel coefficients for all the components of the scalar, vector and tensor sector, and employ these coefficients to regularize the propagators of all the different fields of massive gravity. We also study the massless limit and discuss the appearance of the van Dam-Veltman-Zakharov discontinuity. In the course of the computation, we derive new identities relating the heat kernel coefficients of different field sectors, both massive and massless.
©2024 American Institute of Physics

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory
83C45 Quantization of the gravitational field
83C10 Equations of motion in general relativity and gravitational theory

Software:

xPerm; xTras; xAct; FieldsX

References:

[1] Avramidi, I. G., Heat Kernel and Quantum Gravity, 64, 2000, Springer: Springer, New York · Zbl 0956.83002
[2] Barvinsky, A. O.; Vilkovisky, G. A., The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity, Phys. Rep., 119, 1-74, 1985 · doi:10.1016/0370-1573(85)90148-6
[3] Barvinsky, A. O.; Vilkovisky, G. A., Covariant perturbation theory (II). Second order in the curvature. General algorithms, Nucl. Phys. B, 333, 471-511, 1990 · doi:10.1016/0550-3213(90)90047-h
[4] Vilkovisky, G. A., Heat kernel: Rencontre entre physiciens et mathematiciens, Les rencontres physiciens-mathématiciens de Strasbourg RCP25, 43, 203-224, 1992
[5] Vassilevich, D. V., Heat kernel expansion: User’s manual, Phys. Rep., 388, 279-360, 2003 · Zbl 1042.81093 · doi:10.1016/j.physrep.2003.09.002
[6] Codello, A.; Zanusso, O., On the non-local heat kernel expansion, J. Math. Phys., 54, 013513, 2013 · Zbl 1282.35181 · doi:10.1063/1.4776234
[7] Reuter, M.; Saueressig, F., Quantum Gravity and the Functional Renormalization Group: The Road Towards Asymptotic Safety, 2019, Cambridge University Press
[8] Percacci, R., An Introduction to Covariant Quantum Gravity and Asymptotic Safety. 100 Years of General Relativity Vol. 3, 2017, World Scientific · Zbl 1368.81013
[9] Reuter, M., Nonperturbative evolution equation for quantum gravity, Phys. Rev. D, 57, 971-985, 1998 · doi:10.1103/physrevd.57.971
[10] Lauscher, O.; Reuter, M., Flow equation of quantum Einstein gravity in a higher-derivative truncation, Phys. Rev. D, 66, 025026, 2002 · doi:10.1103/physrevd.66.025026
[11] Codello, A.; Percacci, R.; Rahmede, C., Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Ann. Phys., 324, 414-469, 2009 · Zbl 1161.83343 · doi:10.1016/j.aop.2008.08.008
[12] Knorr, B., The derivative expansion in asymptotically safe quantum gravity: General setup and quartic order, SciPost Phys. Core, 4, 020, 2021 · doi:10.21468/scipostphyscore.4.3.020
[13] Manrique, E.; Rechenberger, S.; Saueressig, F., Asymptotically safe Lorentzian gravity, Phys. Rev. Lett., 106, 251302, 2011 · doi:10.1103/physrevlett.106.251302
[14] Fehre, J.; Litim, D. F.; Pawlowski, J. M.; Reichert, M., Lorentzian quantum gravity and the graviton spectral function, Phys. Rev. Lett., 130, 081501, 2023 · doi:10.1103/physrevlett.130.081501
[15] Banerjee, R.; Niedermaier, M., The spatial functional renormalization group and Hadamard states on cosmological spacetimes, Nucl. Phys. B, 980, 115814, 2022 · Zbl 1497.83051 · doi:10.1016/j.nuclphysb.2022.115814
[16] Saueressig, F.; Wang, J., Foliated asymptotically safe gravity in the fluctuation approach, J. High Energy Phys., 2023, 9, 064 · Zbl 07754643 · doi:10.1007/jhep09(2023)064
[17] D’Angelo, E.; Pinamonti, N., Local solutions of RG flow equations from the Nash-Moser theorem, 2023
[18] D’Angelo, E., Asymptotic safety in Lorentzian quantum gravity, Phys. Rev. D, 109, 066012, 2024 · doi:10.1103/PhysRevD.109.066012
[19] Becchi, C.; Rouet, A.; Stora, R., Renormalization of gauge theories, Ann. Phys., 98, 287, 1976 · doi:10.1016/0003-4916(76)90156-1
[20] Weinberg, S., The Quantum Theory of Fields: Volume 2, Modern Applications, 2005, Cambridge University Press: Cambridge University Press, Cambridge, UK · Zbl 1069.00007
[21] Barnich, G.; Brandt, F.; Henneaux, M., Local BRST cohomology in gauge theories, Phys. Rep., 338, 439, 2000 · Zbl 1097.81571 · doi:10.1016/s0370-1573(00)00049-1
[22] Collins, J. C., Renormalization: An Introduction to Renormalization, the Renormalization Group, and the Operator Product Expansion. Cambridge Monographs on Mathematical Physics Vol. 26, 1986, Cambridge University Press: Cambridge University Press, Cambridge, UK
[23] Pagani, C.; Reuter, M., Composite operators in asymptotic safety, Phys. Rev. D, 95, 066002, 2017 · doi:10.1103/physrevd.95.066002
[24] Houthoff, W.; Kurov, A.; Saueressig, F., On the scaling of composite operators in asymptotic safety, J. High Energy Phys., 2020, 4, 099 · Zbl 1436.83026 · doi:10.1007/jhep04(2020)099
[25] Becker, M.; Pagani, C.; Zanusso, O., Fractal geometry of higher derivative gravity, Phys. Rev. Lett., 124, 151302, 2020 · doi:10.1103/physrevlett.124.151302
[26] Ambjørn, J.; Durhuus, B.; Jonsson, T., Quantum Geometry: A Statistical Field Theory Approach. Cambridge Monographs on Mathematical Physics, 2005, Cambridge University Press: Cambridge University Press, Cambridge, UK
[27] Hamber, H. W., Quantum Gravitation: The Feynman Path Integral Approach, 2009, Springer: Springer, Berlin · Zbl 1171.81001
[28] DeWitt, B. S., Dynamical theory of groups and fields, Conf. Proc. C, 630701, 585-820, 1964 · Zbl 0148.46102
[29] DeWitt, B. S., Quantum field theory in curved spacetime, Phys. Rep., 19, 295-357, 1975 · doi:10.1016/0370-1573(75)90051-4
[30] Christensen, S. M., Vacuum expectation value of the stress tensor in an arbitrary curved background: The covariant point-separation method, Phys. Rev. D, 14, 2490-2501, 1976 · doi:10.1103/physrevd.14.2490
[31] Mandelstam, S., Quantization of the gravitational field, Ann. Phys., 19, 25-66, 1962 · Zbl 0109.20905 · doi:10.1016/0003-4916(62)90233-6
[32] Mandelstam, S., Feynman rules for the gravitational field from the coordinate-independent field-theoretic formalism, Phys. Rev., 175, 1604-1623, 1968 · doi:10.1103/physrev.175.1604
[33] Tsamis, N. C.; Woodard, R. P., Physical Green’s functions in quantum gravity, Ann. Phys., 215, 96-155, 1992 · doi:10.1016/0003-4916(92)90301-2
[34] Teitelboim, C., Gravitation theory in path space, Nucl. Phys. B, 396, 303-325, 1993 · doi:10.1016/0550-3213(93)90268-t
[35] Hamber, H. W., Invariant correlations in simplicial gravity, Phys. Rev. D, 50, 3932-3941, 1994 · doi:10.1103/physrevd.50.3932
[36] Modanese, G., Vacuum correlations at geodesic distance in quantum gravity, Riv. Nuovo Cimento, 17, 1-62, 1994 · doi:10.1007/bf02724514
[37] Ambjørn, J.; Anagnostopoulos, K. N., Quantum geometry of 2D gravity coupled to unitary matter, Nucl. Phys. B, 497, 445-478, 1997 · doi:10.1016/S0550-3213(97)00259-9
[38] Khavkine, I., Quantum astrometric observables: Time delay in classical and quantum gravity, Phys. Rev. D, 85, 124014, 2012 · doi:10.1103/physrevd.85.124014
[39] Bonga, B.; Khavkine, I., Quantum astrometric observables II: Time delay in linearized quantum gravity, Phys. Rev. D, 89, 024039, 2014 · doi:10.1103/physrevd.89.024039
[40] Fröb, M. B., One-loop quantum gravitational corrections to the scalar two-point function at fixed geodesic distance, Classical Quantum Gravity, 35, 035005, 2018 · Zbl 1382.83042 · doi:10.1088/1361-6382/aa9ad1
[41] Klitgaard, N.; Loll, R., Introducing quantum Ricci curvature, Phys. Rev. D, 97, 046008, 2018 · doi:10.1103/physrevd.97.046008
[42] Becker, M.; Pagani, C., Geometric operators in the asymptotic safety scenario for quantum gravity, Phys. Rev. D, 99, 066002, 2019 · doi:10.1103/physrevd.99.066002
[43] Fröb, M. B.; Taslimi Tehrani, M., Green’s functions and Hadamard parametrices for vector and tensor fields in general linear covariant gauges, Phys. Rev. D, 97, 025022, 2018 · doi:10.1103/physrevd.97.025022
[44] D’Amico, G.; de Rham, C.; Dubovsky, S.; Gabadadze, G.; Pirtskhalava, D.; Tolley, A. J., Massive cosmologies, Phys. Rev. D, 84, 124046, 2011 · doi:10.1103/physrevd.84.124046
[45] de Rham, C., Massive gravity, Living Rev. Relativ., 17, 7, 2014 · Zbl 1320.83018 · doi:10.12942/lrr-2014-7
[46] Koyama, K., Cosmological tests of modified gravity, Rep. Prog. Phys., 79, 046902, 2016 · doi:10.1088/0034-4885/79/4/046902
[47] Erratum 121, 129901 (2018). · doi:10.1103/PhysRevLett.118.221101
[48] Bernus, L.; Minazzoli, O.; Fienga, A.; Gastineau, M.; Laskar, J.; Deram, P., Constraining the mass of the graviton with the planetary ephemeris INPOP, Phys. Rev. Lett., 123, 161103, 2019 · doi:10.1103/physrevlett.123.161103
[49] van Dam, H.; Veltman, M., Massive and mass-less Yang-Mills and gravitational fields, Nucl. Phys. B, 22, 397-411, 1970 · doi:10.1016/0550-3213(70)90416-5
[50] Zakharov, V. I., Linearized gravitation theory and the graviton mass, JETP Lett., 12, 312, 1970
[51] Fierz, M., Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin, Helv. Phys. Acta, 12, 3-37, 1939 · JFM 65.1530.03 · doi:10.5169/seals-110930
[52] Pauli, W.; Fierz, M., Über relativistische Feldgleichungen von Teilchen mit beliebigem Spin im elektromagnetischen Feld, Helv. Phys. Acta, 12, 297-300, 1939 · Zbl 0021.27605
[53] Fierz, M.; Pauli, W., On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. R. Soc. A, 173, 211-232, 1939 · JFM 65.1532.01 · doi:10.1098/rspa.1939.0140
[54] Stueckelberg, E. C. G., Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kernkräfte. (Teil I), Helv. Phys. Acta, 11, 225, 1938 · JFM 64.1492.03 · doi:10.5169/seals-110852
[55] Stueckelberg, E. C. G., Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kernkräfte. (Teil II und III), Helv. Phys. Acta, 11, 299, 1938 · JFM 64.1492.03 · doi:10.5169/seals-110855
[56] Parker, L. E.; Toms, D., Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity. Cambridge Monographs on Mathematical Physics, 2009, Cambridge University Press · Zbl 1180.81001
[57] Vilkovisky, G., The unique effective action in quantum field theory, Nucl. Phys. B, 234, 125-137, 1984 · doi:10.1016/0550-3213(84)90228-1
[58] Will, C. M., The confrontation between general relativity and experiment, Living Rev. Relativ., 17, 4, 2014 · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[59] Corbelli, E.; Salucci, P., The extended rotation curve and the dark matter halo of M33, Mon. Not. R. Astron. Soc., 311, 441-447, 2000 · doi:10.1046/j.1365-8711.2000.03075.x
[60] de Blok, W. J. G., The core-cusp problem, Adv. Astron., 2010, 789293 · doi:10.1155/2010/789293
[61] Guth, A. H., Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D, 23, 347-356, 1981 · Zbl 1371.83202 · doi:10.1103/physrevd.23.347
[62] Linde, A. D., A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B, 108, 389-393, 1982 · doi:10.1016/0370-2693(82)91219-9
[63] Erratum 652, C4 (2021). · doi:10.1051/0004-6361/201833910
[64] Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10, 2020 · doi:10.1051/0004-6361/201833887
[66] Castello, S.; Ilić, S.; Kunz, M., Updated dark energy view of inflation, Phys. Rev. D, 104, 023522, 2021 · doi:10.1103/physrevd.104.023522
[67] Escamilla, L. A.; Giarè, W.; Di Valentino, E.; Nunes, R. C.; Vagnozzi, S., The state of the dark energy equation of state circa 2023, J. Cosmol. Astropart. Phys., 2024, 091, 2024 · doi:10.1088/1475-7516/2024/05/091
[68] Shankaranarayanan, S.; Johnson, J. P., Modified theories of gravity: Why, how and what?, Gen. Relativ. Gravitation, 54, 44, 2022 · Zbl 1495.83053 · doi:10.1007/s10714-022-02927-2
[69] Hinterbichler, K., Theoretical aspects of massive gravity, Rev. Mod. Phys., 84, 671-710, 2012 · doi:10.1103/revmodphys.84.671
[70] Tolley, A. J., Cosmological applications of massive gravity, Modif. Einstein’s Theory Gravity Large Distances, 892, 203-224, 2015 · doi:10.1007/978-3-319-10070-8_8
[71] de Rham, C.; Heisenberg, L.; Ribeiro, R. H., On couplings to matter in massive (bi-)gravity, Classical Quantum Gravity, 32, 035022, 2015 · Zbl 1312.83027 · doi:10.1088/0264-9381/32/3/035022
[72] de Rham, C.; Kożuszek, J.; Tolley, A. J.; Wiseman, T., A dynamical formulation of ghost-free massive gravity, Phys. Rev. D, 108, 084052, 2023 · doi:10.1103/PhysRevD.108.084052
[73] Deser, S., Self-interaction and gauge invariance, Gen. Relativ. Gravitation, 1, 9-18, 1970 · doi:10.1007/bf00759198
[74] Wald, R. M., Spin-two fields and general covariance, Phys. Rev. D, 33, 3613, 1986 · doi:10.1103/physrevd.33.3613
[75] Deser, S., Gravity from self-interaction in a curved background, Classical Quantum Gravity, 4, L99, 1987 · Zbl 0645.53057 · doi:10.1088/0264-9381/4/4/006
[76] Randall, L.; Sundrum, R., An alternative to compactification, Phys. Rev. Lett., 83, 4690-4693, 1999 · Zbl 0946.81074 · doi:10.1103/physrelett.83.4690
[77] Gregory, R.; Rubakov, V. A.; Sibiryakov, S. M., Opening up extra dimensions at ultralarge scales, Phys. Rev. Lett., 84, 5928-5931, 2000 · doi:10.1103/physrevlett.84.5928
[78] Hassan, S. F.; Rosen, R. A., Bimetric gravity from ghost-free massive gravity, J. High Energy Phys., 2012, 2, 126 · Zbl 1309.83083 · doi:10.1007/jhep02(2012)126
[79] Caravano, A.; Lüben, M.; Weller, J., Combining cosmological and local bounds on bimetric theory, J. Cosmol. Astropart. Phys., 2021, 9, 035 · Zbl 1486.83068 · doi:10.1088/1475-7516/2021/09/035
[80] Högås, M.; Mörtsell, E., Constraints on bimetric gravity. Part I. Analytical constraints, J. Cosmol. Astropart. Phys., 2021, 5, 001 · Zbl 1485.83047 · doi:10.1088/1475-7516/2021/05/001
[81] Högås, M.; Mörtsell, E., Constraints on bimetric gravity. Part II. Observational constraints, J. Cosmol. Astropart. Phys., 2021, 5, 002 · Zbl 1485.83048 · doi:10.1088/1475-7516/2021/05/002
[82] Högås, M.; Mörtsell, E., Constraints on bimetric gravity from Big Bang nucleosynthesis, J. Cosmol. Astropart. Phys., 2021, 11, 001 · Zbl 1487.83126 · doi:10.1088/1475-7516/2021/11/001
[83] Deser, S.; Jackiw, R.; Templeton, S., Three-dimensional massive gauge theories, Phys. Rev. Lett., 48, 975-978, 1982 · doi:10.1103/physrevlett.48.975
[84] Erratum 185, 406 (1988). · doi:10.1016/0003-4916(82)90164-6
[85] Bergshoeff, E. A.; Hohm, O.; Townsend, P. K., Massive gravity in three dimensions, Phys. Rev. Lett., 102, 201301, 2009 · doi:10.1103/physrevlett.102.201301
[86] Ohta, N.; Percacci, R., Higher derivative gravity and asymptotic safety in diverse dimensions, Classical Quantum Gravity, 31, 015024, 2014 · Zbl 1287.83040 · doi:10.1088/0264-9381/31/1/015024
[87] Blas, D.; Comelli, D.; Nesti, F.; Pilo, L., Lorentz-breaking massive gravity in curved space, Phys. Rev. D, 80, 044025, 2009 · doi:10.1103/physrevd.80.044025
[88] Rubakov, V. A., Lorentz-violating graviton masses: Getting around ghosts, low strong coupling scale and VDVZ discontinuity, 2004
[89] Rubakov, V. A.; Tinyakov, P. G., Infrared-modified gravities and massive gravitons, Phys.-Usp., 51, 759-792, 2008 · doi:10.1070/pu2008v051n08abeh006600
[90] Dubovsky, S. L.; Tinyakov, P. G.; Tkachev, I. I., Massive graviton as a testable cold-dark-matter candidate, Phys. Rev. Lett., 94, 181102, 2005 · doi:10.1103/physrevlett.94.181102
[91] Arkani-Hamed, N.; Cheng, H.-C.; Luty, M. A.; Mukohyama, S., Ghost condensation and a consistent infrared modification of gravity, J. High Energy Phys., 2004, 5, 074 · doi:10.1088/1126-6708/2004/05/074
[93] Hell, A., The strong couplings of massive Yang-Mills theory, J. High Energy Phys., 2022, 3, 167 · Zbl 1522.81232 · doi:10.1007/jhep03(2022)167
[94] Kogan, I. I.; Mouslopoulos, S.; Papazoglou, A., The m → 0 limit for massive graviton in dS_4 and AdS_4: How to circumvent the van Dam-Veltman-Zakharov discontinuity, Phys. Lett. B, 503, 173-180, 2001 · Zbl 0977.83063 · doi:10.1016/s0370-2693(01)00209-x
[95] Porrati, M., No van Dam-Veltman-Zakharov discontinuity in AdS space, Phys. Lett. B, 498, 92-96, 2001 · Zbl 0972.83053 · doi:10.1016/s0370-2693(00)01380-0
[96] Higuchi, A., Forbidden mass range for spin-2 field theory in de Sitter spacetime, Nucl. Phys. B, 282, 397-436, 1987 · doi:10.1016/0550-3213(87)90691-2
[97] Arkani-Hamed, N.; Georgi, H.; Schwartz, M. D., Effective field theory for massive gravitons and gravity in theory space, Ann. Phys., 305, 96-118, 2003 · Zbl 1022.81035 · doi:10.1016/s0003-4916(03)00068-x
[98] Dubovsky, S. L.; Rubakov, V. A., Brane-induced gravity in more than one extra dimension: Violation of equivalence principle and ghost, Phys. Rev. D, 67, 104014, 2003 · doi:10.1103/physrevd.67.104014
[99] Buoninfante, L., Massless and partially massless limits in quadratic gravity, J. High Energ. Phys., 2023, 111, 2023 · Zbl 07807228 · doi:10.1007/JHEP12(2023)111
[100] Kolář, I.; Málek, T., Propagators in AdS for higher-derivative and nonlocal gravity: Heat kernel approach, 2023
[101] Belokogne, A.; Folacci, A., Stueckelberg massive electromagnetism in curved spacetime: Hadamard renormalization of the stress-energy tensor and the Casimir effect, Phys. Rev. D, 93, 044063, 2016 · doi:10.1103/physrevd.93.044063
[102] Belokogne, A.; Folacci, A.; Queva, J., Stueckelberg massive electromagnetism in de Sitter and anti-de Sitter spacetimes: Two-point functions and renormalized stress-energy tensors, Phys. Rev. D, 94, 105028, 2016 · doi:10.1103/physrevd.94.105028
[103] Buchbinder, I. L.; de Paula Netto, T.; Shapiro, I. L., Massive vector field on curved background: Nonminimal coupling, quantization, and divergences, Phys. Rev. D, 95, 085009, 2017 · doi:10.1103/physrevd.95.085009
[104] For λ = 1, this choice is contained in the class of gauge fixings (20).
[105] Bär, C.; Ginoux, N.; Pfäffle, F., Wave Equations on Lorentzian Manifolds and Quantization, 2007, European Mathematical Society Publishing House: European Mathematical Society Publishing House, Zürich, Switzerland · Zbl 1118.58016
[106] Bär, C.; Ginoux, N.; Bär, C.; Ginoux, N.; Schwarz, M., Classical and quantum fields on Lorentzian manifolds, Global Differential Geometry, 359, 2012, Springer-Verlag: Springer-Verlag, Berlin, Heidelberg, Germany · Zbl 1254.81044
[107] Bär, C., Green-hyperbolic operators on globally hyperbolic spacetimes, Commun. Math. Phys., 333, 1585, 2015 · Zbl 1316.58027 · doi:10.1007/s00220-014-2097-7
[108] Synge, J. L., Relativity: The General Theory, 1960, North-Holland, Amsterdam, The Netherlands · Zbl 0090.18504
[109] DeWitt, B. S.; Brehme, R. W., Radiation damping in a gravitational field, Ann. Phys., 9, 220, 1960 · Zbl 0092.45003 · doi:10.1016/0003-4916(60)90030-0
[110] Alternatively, this equation could have been obtained directly from the vector part of the total massive gravity action (21) with gauge parameter α = 1.
[111] Poisson, E.; Pound, A.; Vega, I., The motion of point particles in curved spacetime, Living Rev. Relativ., 14, 7, 2011 · Zbl 1316.83024 · doi:10.12942/lrr-2011-7
[112] Lichnerowicz, A., Propagateurs et commutateurs en relativité générale, Publ. Math. l’IHÉS, 10, 5, 1961 · Zbl 0098.42607
[113] Martín-García, J. M., xAct: Efficient tensor computer algebra for the Wolfram language, 2022
[114] Brizuela, D.; Martin-Garcia, J. M.; Mena Marugan, G. A., xPert: Computer algebra for metric perturbation theory, Gen. Relativ. Gravitation, 41, 2415-2431, 2009 · Zbl 1176.83004 · doi:10.1007/s10714-009-0773-2
[115] Nutma, T., xTras: A field-theory inspired xAct package for mathematica, Comput. Phys. Commun., 185, 1719-1738, 2014 · Zbl 1348.70003 · doi:10.1016/j.cpc.2014.02.006
[116] Ward, J. C., An identity in quantum electrodynamics, Phys. Rev., 78, 182, 1950 · Zbl 0041.33012 · doi:10.1103/physrev.78.182
[117] Takahashi, Y., On the generalized ward identity, Nuovo Cimento, 6, 371, 1957 · Zbl 0078.20202 · doi:10.1007/bf02832514
[118] Taylor, J. C., Ward identities and charge renormalization of the Yang-Mills field, Nucl. Phys. B, 33, 436, 1971 · doi:10.1016/0550-3213(71)90297-5
[119] Slavnov, A. A., Ward identities in gauge theories, Theor. Math. Phys., 10, 99, 1972 · doi:10.1007/bf01090719
[120] Choquet-Bruhat, Y.; DeWitt-Morette, C.; Dillar-Bleick, M., Analysis, Manifolds and Physics, 1982, North-Holland: North-Holland, Amsterdam, The Netherlands · Zbl 0492.58001
[121] Fulling, S. A., Aspects of Quantum Field Theory in Curved Space-Time, 1989, London Mathematical Society: London Mathematical Society, London · Zbl 0677.53081
[122] Camporesi, R., Harmonic analysis and propagators on homogeneous spaces, Phys. Rep., 196, 1, 1990 · doi:10.1016/0370-1573(90)90120-q
[123] Berline, N.; Getzler, E.; Vergne, M., Heat Kernels and Dirac Operators, 1992, Springer-Verlag: Springer-Verlag, Berlin, Heidelberg, Germany · Zbl 0744.58001
[124] Kawakami, T., Global existence of solutions for the heat equation with a nonlinear boundary condition, J. Math. Anal. Appl., 368, 320-329, 2010 · Zbl 1192.35105 · doi:10.1016/j.jmaa.2010.02.007
[125] Synge, J. L., A characteristic function in Riemannian space and its application to the solution of geodesic triangles, Proc. London Math. Soc., s2-32, 241, 1931 · Zbl 0002.15401 · doi:10.1112/plms/s2-32.1.241
[126] Van Vleck, J. H., The correspondence principle in the statistical interpretation of quantum mechanics, Proc. Natl. Acad. Sci. U. S. A., 14, 178-188, 1928 · JFM 54.0976.01 · doi:10.1073/pnas.14.2.178
[127] Barvinsky, A. O.; Vilkovisky, G. A., Beyond the Schwinger-DeWitt technique: Converting loops into trees and in-in currents, Nucl. Phys. B, 282, 163-188, 1987 · doi:10.1016/0550-3213(87)90681-x
[128] Groh, K.; Saueressig, F.; Zanusso, O., Off-diagonal heat-kernel expansion and its application to fields with differential constraints, 2011
[129] Decanini, Y.; Folacci, A., Off-diagonal coefficients of the Dewitt-Schwinger and Hadamard representations of the Feynman propagator, Phys. Rev. D, 73, 044027, 2006 · doi:10.1103/physrevd.73.044027
[130] Anselmi, D.; Benini, A., Improved Schwinger-DeWitt techniques for higher-derivative corrections to operator determinants, J. High Energy Phys., 2007, 10, 099 · doi:10.1088/1126-6708/2007/10/099
[131] Benedetti, D.; Groh, K.; Machado, P. F.; Saueressig, F., The universal RG machine, J. High Energy Phys., 2011, 6, 079 · Zbl 1298.83042 · doi:10.1007/jhep06(2011)079
[132] Groh, K.; Rechenberger, S.; Saueressig, F.; Zanusso, O., Higher derivative gravity from the universal renormalization group machine, Proc. Sci., 134, 124, 2012 · doi:10.22323/1.134.0124
[133] Hollands, S.; Wald, R. M., Local Wick polynomials and time ordered products of quantum fields in curved spacetime, Commun. Math. Phys., 223, 289-326, 2001 · Zbl 0989.81081 · doi:10.1007/s002200100540
[134] Sakai, T., On eigen-values of Laplacian and curvature of Riemannian manifold, Tohoku Math. J., 23, 589-603, 1971 · Zbl 0237.53040 · doi:10.2748/tmj/1178242547
[135] Berger, M.; Gauduchon, P.; Mazet, E., Le Spectre d’une Variete Riemannienne. Lecture Notes in Mathematics Vol. 194, 141-241, 1971, Springer-Verlag, Berlin: Springer-Verlag, Berlin, Heidelberg · Zbl 0223.53034
[136] Chavel, I.; Randol, B.; Dodziuk, J., Eigenvalues in Riemannian Geometry, 1984, Elsevier Science · Zbl 0551.53001
[137] Avramidi, I. G.; Schimming, R.; Bordag, M., Algorithms for the calculation of the heat kernel coefficients, Quantum Field Theory under the Influence of External Conditions, 150-162, 1996, B. G. Teubner Verlagsgesellschaft, Stuttgart: B. G. Teubner Verlagsgesellschaft, Stuttgart, Leipzig, Germany
[138] Gilkey, P. B., Recursion relations and the asymptotic behavior of the eigenvalues of the Laplacian, Compos. Math., 38, 201-240, 1979 · Zbl 0405.58050
[139] Kirsten, K., Spectral functions in mathematics and physics, AIP Conf. Proc., 484, 106-146, 1999 · Zbl 1162.58303 · doi:10.1063/1.59656
[140] van de Ven, A., Explicit counteraction algorithms in higher dimensions, Nucl. Phys. B, 250, 593-617, 1985 · doi:10.1016/0550-3213(85)90496-1
[141] Avramidi, I. G., Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher derivative quantum gravity, 1986
[142] Avramidi, I. G., Background field calculations in quantum field theory (vacuum polarization), Theor. Math. Phys., 79, 494-502, 1989 · doi:10.1007/bf01016530
[143] van de Ven, A. E. M., Index-free heat kernel coefficients, Classical Quantum Gravity, 15, 2311-2344, 1998 · Zbl 0937.58018 · doi:10.1088/0264-9381/15/8/014
[144] Franchino-Viñas, S. A.; García-Pérez, C.; Mazzitelli, F. D.; Vitagliano, V.; Wainstein Haimovichi, U., Resummed heat kernel and effective action for Yukawa and QED, Phys. Lett. B, 854, 138684, 2024 · Zbl 07870534 · doi:10.1016/j.physletb.2024.138684
[145] Strohmaier, A.; Zelditch, S., Heat and wave kernel expansions for stationary spacetimes, 2023
[146] Estrada, R.; Fulling, S. A., Distributional asymptotic expansions of spectral functions and of the associated Green kernels, Electron. J. Diff. Eqns., 1999, 7, 1-37, 1999 · Zbl 0919.35096
[147] Moretti, V., Proof of the symmetry of the off-diagonal heat-kernel and Hadamard’s expansion coefficients in general C^∞ Riemannian manifolds, Commun. Math. Phys., 208, 283-309, 1999 · Zbl 0960.58024 · doi:10.1007/s002200050759
[148] In the Lorentzian case, the factor \(\operatorname{e}^{\frac{ \operatorname{i} \sigma ( x , x^\prime )}{ 2 \tau}}\) also vanishes for light-like separations, and we recover the well-known divergence of the propagator as one approaches the light cone.
[149] Piguet, O.; Sibold, K.; Schweda, M., General solution of the supersymmetry consistency conditions, Nucl. Phys. B, 174, 183-188, 1980 · doi:10.1016/0550-3213(80)90197-2
[150] Itoyama, H.; Nair, V. P.; Ren, H.-c., Supersymmetry anomalies and some aspects of renormalization, Nucl. Phys. B, 262, 317-330, 1985 · doi:10.1016/0550-3213(85)90289-5
[151] Bardeen, W. A.; Zumino, B., Consistent and covariant anomalies in gauge and gravitational theories, Nucl. Phys. B, 244, 421-453, 1984 · doi:10.1016/0550-3213(84)90322-5
[152] Morette, C., On the definition and approximation of Feynman’s path integrals, Phys. Rev., 81, 848-852, 1951 · Zbl 0042.45506 · doi:10.1103/physrev.81.848
[153] Avramidi, I. G.; Buckman, B. J., Heat determinant on manifolds, J. Geom. Phys., 104, 64-88, 2016 · Zbl 1344.53033 · doi:10.1016/j.geomphys.2016.02.004
[154] Martín-García, J. M., xPerm: Fast index canonicalization for tensor computer algebra, Comput. Phys. Commun., 179, 597-603, 2008 · Zbl 1197.15002 · doi:10.1016/j.cpc.2008.05.009
[155] Erratum 101, 029901 (2020). · doi:10.1103/physrevd.84.104039
[156] Allen, B.; Lütken, C. A., Spinor two-point functions in maximally symmetric spaces, Commun. Math. Phys., 106, 201, 1986 · Zbl 0606.53043 · doi:10.1007/bf01454972
[157] Kazdan, J. L., Another proof of Bianchi’s identity in Riemannian geometry, Proc. Am. Math. Soc., 81, 341-342, 1981 · Zbl 0459.53033 · doi:10.1090/s0002-9939-1981-0593487-3
[158] Schlicht, M., Another proof of Bianchi’s identity in arbitrary bundles, Ann. Global Anal. Geom., 13, 19-22, 1995 · Zbl 0824.53020 · doi:10.1007/bf00774563
[159] Fröb, M. B., FieldsX—An extension package for the xAct tensor computer algebra suite to include fermions, gauge fields and BRST cohomology, 2020
[160] Moretti, V., Proof of the symmetry of the off-diagonal Hadamard/Seeley-deWitt’s coefficients in C^∞ Lorentzian manifolds by a ‘local Wick rotation, Commun. Math. Phys., 212, 165-189, 2000 · Zbl 0956.58019 · doi:10.1007/s002200000202
[161] Kamiński, W., Elementary proof of symmetry of the off-diagonal Seeley-DeWitt (and related Hadamard) coefficients, 2019
[162] Lovelock, D., Dimensionally dependent identities, Math. Proc. Cambridge Philos. Soc., 68, 345-350, 1970 · Zbl 0197.48301 · doi:10.1017/s0305004100046144
[163] Edgar, S. B.; Höglund, A., Dimensionally dependent tensor identities by double antisymmetrization, J. Math. Phys., 43, 659-677, 2002 · Zbl 1052.53022 · doi:10.1063/1.1425428
[164] Gopakumar, R.; Gupta, R. K.; Lal, S., The heat kernel on AdS, J. High Energy Phys., 2011, 11, 010 · Zbl 1306.81155 · doi:10.1007/jhep11(2011)010
[165] Bobev, N.; David, M.; Hong, J.; Reys, V.; Zhang, X., A compendium of logarithmic corrections in AdS/CFT, J. High Energ. Phys., 2024, 20, 2024 · Zbl 07865590 · doi:10.1103/physrevd.67.104014
[166] Kluth, Y.; Litim, D. F., Heat kernel coefficients on the sphere in any dimension, Eur. Phys. J. C, 80, 269, 2020 · doi:10.1140/epjc/s10052-020-7784-2
[168] Brown, J. D.; Marolf, D., Relativistic material reference systems, Phys. Rev. D, 53, 1835-1844, 1996 · doi:10.1103/physrevd.53.1835
[169] Dittrich, B., Partial and complete observables for canonical general relativity, Classical Quantum Gravity, 23, 6155-6184, 2006 · Zbl 1111.83015 · doi:10.1088/0264-9381/23/22/006
[170] Nakamura, K., Second-order gauge invariant cosmological perturbation theory: Einstein equations in terms of gauge invariant variables, Prog. Theor. Phys., 117, 17-74, 2007 · Zbl 1125.83016 · doi:10.1143/ptp.117.17
[171] Pons, J. M.; Salisbury, D. C.; Sundermeyer, K. A., Revisiting observables in generally covariant theories in the light of gauge fixing methods, Phys. Rev. D, 80, 084015, 2009 · doi:10.1103/physrevd.80.084015
[172] Giesel, K.; Hofmann, S.; Thiemann, T.; Winkler, O., Manifestly gauge-invariant general relativistic perturbation theory: II. FRW background and first order, Classical Quantum Gravity, 27, 055006, 2010 · Zbl 1186.83005 · doi:10.1088/0264-9381/27/5/055006
[173] Gasperini, M.; Marozzi, G.; Nugier, F.; Veneziano, G., Light-cone averaging in cosmology: Formalism and applications, J. Cosmol. Astropart. Phys., 2011, 7, 008 · doi:10.1088/1475-7516/2011/07/008
[174] Tambornino, J., Relational observables in gravity: A review, SIGMA, 8, 017, 2012 · Zbl 1242.83047 · doi:10.3842/sigma.2012.017
[175] Erratum 94, 029903 (2016). · doi:10.1103/physrevd.93.024030
[176] Brunetti, R.; Fredenhagen, K.; Hack, T.-P.; Pinamonti, N.; Rejzner, K., Cosmological perturbation theory and quantum gravity, J. High Energy Phys., 2016, 8, 032 · Zbl 1390.83059 · doi:10.1007/jhep08(2016)032
[177] Giesel, K.; Herzog, A.; Singh, P., Gauge invariant variables for cosmological perturbation theory using geometrical clocks, Classical Quantum Gravity, 35, 155012, 2018 · Zbl 1409.83234 · doi:10.1088/1361-6382/aacda2
[178] Fröb, M. B.; Lima, W. C. C., Propagators for gauge-invariant observables in cosmology, Classical Quantum Gravity, 35, 095010, 2018 · Zbl 1391.83140 · doi:10.1088/1361-6382/aab427
[179] Fanizza, G.; Marozzi, G.; Medeiros, M.; Schiaffino, G., The cosmological perturbation theory on the geodesic light-cone background, J. Cosmol. Astropart. Phys., 2021, 2, 014 · Zbl 1484.83114 · doi:10.1088/1475-7516/2021/02/014
[180] Mitsou, E.; Fanizza, G.; Grimm, N.; Yoo, J., Cutting out the cosmological middle man: General relativity in the light-cone coordinates, Classical Quantum Gravity, 38, 055011, 2021 · Zbl 1510.83100 · doi:10.1088/1361-6382/abd681
[181] Fröb, M. B.; Lima, W. C. C., Cosmological perturbations and invariant observables in geodesic lightcone coordinates, J. Cosmol. Astropart. Phys., 2022, 1, 034 · Zbl 1486.83031 · doi:10.1088/1475-7516/2022/01/034
[182] Baldazzi, A.; Falls, K.; Ferrero, R., Relational observables in asymptotically safe gravity, Ann. Phys., 440, 168822, 2022 · Zbl 1494.83006 · doi:10.1016/j.aop.2022.168822
[183] Fröb, M. B.; Lima, W. C. C., Synchronous coordinates and gauge-invariant observables in cosmological spacetimes, Classical Quantum Gravity, 40, 215006, 2023 · Zbl 1531.83185 · doi:10.1088/1361-6382/acf98a
[184] Goeller, C.; Hoehn, P. A.; Kirklin, J., Diffeomorphism-invariant observables and dynamical frames in gravity: Reconciling bulk locality with general covariance, 2022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.