×

On the scaling of composite operators in asymptotic safety. (English) Zbl 1436.83026

Summary: The Asymptotic Safety hypothesis states that the high-energy completion of gravity is provided by an interacting renormalization group fixed point. This implies non-trivial quantum corrections to the scaling dimensions of operators and correlation functions which are characteristic for the corresponding universality class. We use the composite operator formalism for the effective average action to derive an analytic expression for the scaling dimension of an infinite family of geometric operators \(\int{d}^dx\sqrt{g}{R}^n\). We demonstrate that the anomalous dimensions interpolate continuously between their fixed point value and zero when evaluated along renormalization group trajectories approximating classical general relativity at low energy. Thus classical geometry emerges when quantum fluctuations are integrated out. We also compare our results to the stability properties of the interacting renormalization group fixed point projected to \(f (R)\)-gravity, showing that the composite operator formalism in the single-operator approximation cannot be used to reliably determine the number of relevant parameters of the theory.

MSC:

83C45 Quantization of the gravitational field
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81T17 Renormalization group methods applied to problems in quantum field theory

References:

[1] S. Weinberg, Critical phenomena for field theorists, in Understanding the fundamental constituents of matter, A. Zichichi ed., Springer, Germany (1976).
[2] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979). · Zbl 0424.53001
[3] R. Percacci, An introduction to covariant quantum gravity and asymptotic safety, in 100 years of general relativity, volume 3, W.T. Ni ed., World Scientific, Singapore (2017). · Zbl 1368.81013
[4] M. Reuter and F. Saueressig, Quantum gravity and the functional renormalization group, Cambridge University Press, Cambridge U.K. (2019). · Zbl 1207.81085
[5] M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev.D 57 (1998) 971 [hep-th/9605030] [INSPIRE].
[6] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett.B 301 (1993) 90 [arXiv:1710.05815] [INSPIRE].
[7] T.R. Morris, The exact renormalization group and approximate solutions, Int. J. Mod. Phys.A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE]. · Zbl 0985.81604
[8] M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev.D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].
[9] W. Souma, Nontrivial ultraviolet fixed point in quantum gravity, Prog. Theor. Phys.102 (1999) 181 [hep-th/9907027] [INSPIRE].
[10] S. Falkenberg and S.D. Odintsov, Gauge dependence of the effective average action in Einstein gravity, Int. J. Mod. Phys.A 13 (1998) 607 [hep-th/9612019] [INSPIRE]. · Zbl 0921.53047
[11] O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev.D 65 (2002) 025013 [hep-th/0108040] [INSPIRE]. · Zbl 0993.83012
[12] D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett.92 (2004) 201301 [hep-th/0312114] [INSPIRE]. · Zbl 1267.83040
[13] A. Bonanno and M. Reuter, Proper time flow equation for gravity, JHEP02 (2005) 035 [hep-th/0410191] [INSPIRE].
[14] A. Eichhorn, H. Gies and M.M. Scherer, Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity, Phys. Rev.D 80 (2009) 104003 [arXiv:0907.1828] [INSPIRE].
[15] E. Manrique and M. Reuter, Bimetric truncations for quantum Einstein gravity and asymptotic safety, Annals Phys.325 (2010) 785 [arXiv:0907.2617] [INSPIRE]. · Zbl 1186.83060
[16] A. Eichhorn and H. Gies, Ghost anomalous dimension in asymptotically safe quantum gravity, Phys. Rev.D 81 (2010) 104010 [arXiv:1001.5033] [INSPIRE].
[17] K. Groh and F. Saueressig, Ghost wave-function renormalization in asymptotically safe quantum gravity, J. Phys.A 43 (2010) 365403 [arXiv:1001.5032] [INSPIRE]. · Zbl 1197.83051
[18] E. Manrique, M. Reuter and F. Saueressig, Bimetric renormalization group flows in quantum Einstein gravity, Annals Phys.326 (2011) 463 [arXiv:1006.0099] [INSPIRE]. · Zbl 1210.83018
[19] N. Christiansen, D.F. Litim, J.M. Pawlowski and A. Rodigast, Fixed points and infrared completion of quantum gravity, Phys. Lett.B 728 (2014) 114 [arXiv:1209.4038] [INSPIRE]. · Zbl 1377.83030
[20] A. Codello, G. D’Odorico and C. Pagani, Consistent closure of renormalization group flow equations in quantum gravity, Phys. Rev.D 89 (2014) 081701 [arXiv:1304.4777] [INSPIRE].
[21] D. Benedetti, On the number of relevant operators in asymptotically safe gravity, EPL102 (2013) 20007 [arXiv:1301.4422] [INSPIRE].
[22] D. Becker and M. Reuter, En route to Background Independence: Broken split-symmetry and how to restore it with bi-metric average actions, Annals Phys.350 (2014) 225 [arXiv:1404.4537] [INSPIRE]. · Zbl 1344.83024
[23] K. Falls, Renormalization of Newton’s constant, Phys. Rev.D 92 (2015) 124057 [arXiv:1501.05331] [INSPIRE].
[24] H. Gies, B. Knorr and S. Lippoldt, Generalized parametrization dependence in quantum gravity, Phys. Rev.D 92 (2015) 084020 [arXiv:1507.08859] [INSPIRE].
[25] C. Pagani and M. Reuter, Composite operators in asymptotic safety, Phys. Rev.D 95 (2017) 066002 [arXiv:1611.06522] [INSPIRE].
[26] K. Falls, Physical renormalization schemes and asymptotic safety in quantum gravity, Phys. Rev.D 96 (2017) 126016 [arXiv:1702.03577] [INSPIRE].
[27] B. Knorr and S. Lippoldt, Correlation functions on a curved background, Phys. Rev.D 96 (2017) 065020 [arXiv:1707.01397] [INSPIRE].
[28] O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher derivative truncation, Phys. Rev.D 66 (2002) 025026 [hep-th/0205062] [INSPIRE]. · Zbl 0993.83012
[29] M. Reuter and F. Saueressig, A class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior, Phys. Rev.D 66 (2002) 125001 [hep-th/0206145] [INSPIRE].
[30] A. Codello and R. Percacci, Fixed points of higher derivative gravity, Phys. Rev. Lett.97 (2006) 221301 [hep-th/0607128] [INSPIRE]. · Zbl 1228.83091
[31] A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f (R)-gravity, Int. J. Mod. Phys.A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE]. · Zbl 1161.83343
[32] P.F. Machado and F. Saueressig, On the renormalization group flow of f (R)-gravity, Phys. Rev.D 77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].
[33] M.R. Niedermaier, Gravitational fixed points from perturbation theory, Phys. Rev. Lett.103 (2009) 101303 [INSPIRE]. · Zbl 1204.83016
[34] D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett.A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE]. · Zbl 1175.83030
[35] D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in asymptotically safe gravity, Nucl. Phys.B 824 (2010) 168 [arXiv:0902.4630] [INSPIRE]. · Zbl 1196.83019
[36] D. Benedetti, P.F. Machado and F. Saueressig, Four-derivative interactions in asymptotically safe gravity, AIP Conf. Proc.1196 (2009) 44 [arXiv:0909.3265] [INSPIRE]. · Zbl 1175.83030
[37] D. Benedetti, K. Groh, P.F. Machado and F. Saueressig, The universal RG machine, JHEP06 (2011) 079 [arXiv:1012.3081] [INSPIRE]. · Zbl 1298.83042
[38] S. Rechenberger and F. Saueressig, The R^2phase-diagram of QEG and its spectral dimension, Phys. Rev.D 86 (2012) 024018 [arXiv:1206.0657] [INSPIRE].
[39] N. Ohta and R. Percacci, Higher derivative gravity and asymptotic safety in diverse dimensions, Class. Quant. Grav.31 (2014) 015024 [arXiv:1308.3398] [INSPIRE]. · Zbl 1287.83040
[40] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic safety, arXiv:1301.4191 [INSPIRE].
[41] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic safety of quantum gravity, Phys. Rev.D 93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].
[42] A. Eichhorn, The renormalization group flow of unimodular f (R) gravity, JHEP04 (2015) 096 [arXiv:1501.05848] [INSPIRE].
[43] N. Ohta, R. Percacci and G.P. Vacca, Flow equation for f (R) gravity and some of its exact solutions, Phys. Rev.D 92 (2015) 061501 [arXiv:1507.00968] [INSPIRE].
[44] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, On de Sitter solutions in asymptotically safe f (R) theories, Class. Quant. Grav.35 (2018) 135006 [arXiv:1607.04962] [INSPIRE]. · Zbl 1409.83145
[45] K. Falls and N. Ohta, Renormalization group equation for f (R) gravity on hyperbolic spaces, Phys. Rev.D 94 (2016) 084005 [arXiv:1607.08460] [INSPIRE].
[46] N. Christiansen, Four-derivative quantum gravity beyond perturbation theory, arXiv:1612.06223 [INSPIRE].
[47] S. Gonzalez-Martin, T.R. Morris and Z.H. Slade, Asymptotic solutions in asymptotic safety, Phys. Rev.D 95 (2017) 106010 [arXiv:1704.08873] [INSPIRE].
[48] D. Becker, C. Ripken and F. Saueressig, On avoiding Ostrogradski instabilities within asymptotic safety, JHEP12 (2017) 121 [arXiv:1709.09098] [INSPIRE]. · Zbl 1383.83025
[49] H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, Gravitational two-loop counterterm is asymptotically safe, Phys. Rev. Lett.116 (2016) 211302 [arXiv:1601.01800] [INSPIRE].
[50] M. Reuter and H. Weyer, Conformal sector of quantum Einstein gravity in the local potential approximation: non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance, Phys. Rev.D 80 (2009) 025001 [arXiv:0804.1475] [INSPIRE].
[51] D. Benedetti and F. Caravelli, The local potential approximation in quantum gravity, JHEP06 (2012) 017 [Erratum ibid.10 (2012) 157] [arXiv:1204.3541] [INSPIRE].
[52] M. Demmel, F. Saueressig and O. Zanusso, Fixed-functionals of three-dimensional quantum Einstein gravity, JHEP11 (2012) 131 [arXiv:1208.2038] [INSPIRE]. · Zbl 1397.83030
[53] J.A. Dietz and T.R. Morris, Asymptotic safety in the f (R) approximation, JHEP01 (2013) 108 [arXiv:1211.0955] [INSPIRE]. · Zbl 1342.81339
[54] I.H. Bridle, J.A. Dietz and T.R. Morris, The local potential approximation in the background field formalism, JHEP03 (2014) 093 [arXiv:1312.2846] [INSPIRE].
[55] J.A. Dietz and T.R. Morris, Redundant operators in the exact renormalisation group and in the f (R) approximation to asymptotic safety, JHEP07 (2013) 064 [arXiv:1306.1223] [INSPIRE]. · Zbl 1342.83080
[56] M. Demmel, F. Saueressig and O. Zanusso, RG flows of quantum einstein gravity on maximally symmetric spaces, JHEP06 (2014) 026 [arXiv:1401.5495] [INSPIRE]. · Zbl 1333.83017
[57] M. Demmel, F. Saueressig and O. Zanusso, RG flows of quantum einstein gravity in the linear-geometric approximation, Annals Phys.359 (2015) 141 [arXiv:1412.7207] [INSPIRE]. · Zbl 1343.83015
[58] M. Demmel, F. Saueressig and O. Zanusso, A proper fixed functional for four-dimensional quantum Einstein gravity, JHEP08 (2015) 113 [arXiv:1504.07656] [INSPIRE]. · Zbl 1388.83105
[59] N. Ohta, R. Percacci and G.P. Vacca, Renormalization group equation and scaling solutions for f (R) gravity in exponential parametrization, Eur. Phys. J.C 76 (2016) 46 [arXiv:1511.09393] [INSPIRE].
[60] P. Labus, T.R. Morris and Z.H. Slade, Background independence in a background dependent renormalization group, Phys. Rev.D 94 (2016) 024007 [arXiv:1603.04772] [INSPIRE].
[61] J.A. Dietz, T.R. Morris and Z.H. Slade, Fixed point structure of the conformal factor field in quantum gravity, Phys. Rev.D 94 (2016) 124014 [arXiv:1605.07636] [INSPIRE].
[62] B. Knorr, Infinite order quantum-gravitational correlations, Class. Quant. Grav.35 (2018) 115005 [arXiv:1710.07055] [INSPIRE]. · Zbl 1393.83016
[63] K. Falls et al., Asymptotic safety of quantum gravity beyond Ricci scalars, Phys. Rev.D 97 (2018) 086006 [arXiv:1801.00162] [INSPIRE].
[64] N. Christiansen, B. Knorr, J.M. Pawlowski and A. Rodigast, Global flows in quantum gravity, Phys. Rev.D 93 (2016) 044036 [arXiv:1403.1232] [INSPIRE].
[65] J. Meibohm, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity-matter systems, Phys. Rev.D 93 (2016) 084035 [arXiv:1510.07018] [INSPIRE].
[66] N. Christiansen et al., Local quantum gravity, Phys. Rev.D 92 (2015) 121501 [arXiv:1506.07016] [INSPIRE].
[67] T. Denz, J.M. Pawlowski and M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity, Eur. Phys. J.C 78 (2018) 336 [arXiv:1612.07315] [INSPIRE].
[68] N. Christiansen, D.F. Litim, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity with matter, Phys. Rev.D 97 (2018) 106012 [arXiv:1710.04669] [INSPIRE].
[69] N. Christiansen, K. Falls, J.M. Pawlowski and M. Reichert, Curvature dependence of quantum gravity, Phys. Rev.D 97 (2018) 046007 [arXiv:1711.09259] [INSPIRE].
[70] A. Eichhorn, P. Labus, J.M. Pawlowski and M. Reichert, Effective universality in quantum gravity, SciPost Phys.5 (2018) 031 [arXiv:1804.00012] [INSPIRE].
[71] A. Eichhorn et al., How perturbative is quantum gravity?, Phys. Lett.B 792 (2019) 310 [arXiv:1810.02828] [INSPIRE].
[72] L. Bosma, B. Knorr and F. Saueressig, Resolving spacetime singularities within asymptotic safety, Phys. Rev. Lett.123 (2019) 101301 [arXiv:1904.04845] [INSPIRE].
[73] B. Knorr, C. Ripken and F. Saueressig, Form factors in asymptotic safety: conceptual ideas and computational toolbox, Class. Quant. Grav.36 (2019) 234001 [arXiv:1907.02903] [INSPIRE]. · Zbl 1478.83093
[74] P. Donà, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum gravity, Phys. Rev.D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].
[75] J. Biemans, A. Platania and F. Saueressig, Renormalization group fixed points of foliated gravity-matter systems, JHEP05 (2017) 093 [arXiv:1702.06539] [INSPIRE]. · Zbl 1380.83088
[76] A. Eichhorn and A. Held, Mass difference for charged quarks from asymptotically safe quantum gravity, Phys. Rev. Lett.121 (2018) 151302 [arXiv:1803.04027] [INSPIRE].
[77] N. Alkofer and F. Saueressig, Asymptotically safe f (R)-gravity coupled to matter I: the polynomial case, Annals Phys.396 (2018) 173 [arXiv:1802.00498] [INSPIRE]. · Zbl 1398.83030
[78] J.M. Pawlowski, M. Reichert, C. Wetterich and M. Yamada, Higgs scalar potential in asymptotically safe quantum gravity, Phys. Rev.D 99 (2019) 086010 [arXiv:1811.11706] [INSPIRE].
[79] G.P. De Brito, Y. Hamada, A.D. Pereira and M. Yamada, On the impact of Majorana masses in gravity-matter systems, JHEP08 (2019) 142 [arXiv:1905.11114] [INSPIRE]. · Zbl 1456.83019
[80] B. Bürger, J.M. Pawlowski, M. Reichert and B.-J. Schaefer, Curvature dependence of quantum gravity with scalars, arXiv:1912.01624 [INSPIRE].
[81] A. Eichhorn, An asymptotically safe guide to quantum gravity and matter, Front. Astron. Space Sci.5 (2019) 47 [arXiv:1810.07615] [INSPIRE].
[82] T.R. Morris and R. Percacci, Trace anomaly and infrared cutoffs, Phys. Rev.D 99 (2019) 105007 [arXiv:1810.09824] [INSPIRE].
[83] A. Baldazzi, R. Percacci and V. Skrinjar, Wicked metrics, Class. Quant. Grav.36 (2019) 105008 [arXiv:1811.03369] [INSPIRE]. · Zbl 1475.83026
[84] A. Baldazzi, R. Percacci and V. Skrinjar, Quantum fields without Wick rotation, Symmetry11 (2019) 373 [arXiv:1901.01891] [INSPIRE]. · Zbl 1423.81137
[85] A. Maas, The Fröhlich-Morchio-Strocchi mechanism and quantum gravity, arXiv:1908.02140 [INSPIRE].
[86] J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative quantum gravity, Phys. Rept.519 (2012) 127 [arXiv:1203.3591] [INSPIRE]. · Zbl 1371.83066
[87] R. Loll, Quantum gravity from causal dynamical triangulations: a review, Class. Quant. Grav.37 (2020) 013002 [arXiv:1905.08669] [INSPIRE]. · Zbl 1478.83095
[88] J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A second-order phase transition in CDT, Phys. Rev. Lett.107 (2011) 211303 [arXiv:1108.3932] [INSPIRE].
[89] J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, Second- and first-order phase transitions in CDT, Phys. Rev.D 85 (2012) 124044 [arXiv:1205.1229] [INSPIRE].
[90] J. Ambjørn et al., Critical phenomena in causal dynamical triangulations, Class. Quant. Grav.36 (2019) 224001 [arXiv:1904.05755] [INSPIRE].
[91] J. Ambjørn et al., Towards an UV fixed point in CDT gravity, JHEP07 (2019) 166 [arXiv:1906.04557] [INSPIRE]. · Zbl 1418.83012
[92] E. Manrique, S. Rechenberger and F. Saueressig, Asymptotically safe Lorentzian gravity, Phys. Rev. Lett.106 (2011) 251302 [arXiv:1102.5012] [INSPIRE].
[93] S. Rechenberger and F. Saueressig, A functional renormalization group equation for foliated spacetimes, JHEP03 (2013) 010 [arXiv:1212.5114] [INSPIRE]. · Zbl 1342.83258
[94] J. Biemans, A. Platania and F. Saueressig, Quantum gravity on foliated spacetimes: asymptotically safe and sound, Phys. Rev.D 95 (2017) 086013 [arXiv:1609.04813] [INSPIRE]. · Zbl 1380.83088
[95] W.B. Houthoff, A. Kurov and F. Saueressig, Impact of topology in foliated quantum Einstein gravity, Eur. Phys. J.C 77 (2017) 491 [arXiv:1705.01848] [INSPIRE].
[96] B. Knorr, Lorentz symmetry is relevant, Phys. Lett.B 792 (2019) 142 [arXiv:1810.07971] [INSPIRE]. · Zbl 1416.81115
[97] A. Eichhorn, A. Platania and M. Schiffer, Lorentz invariance violations in the interplay of quantum gravity with matter, arXiv:1911.10066 [INSPIRE].
[98] J. Ambjørn, J. Jurkiewicz and R. Loll, Spectral dimension of the universe, Phys. Rev. Lett.95 (2005) 171301 [hep-th/0505113] [INSPIRE]. · Zbl 1247.83243
[99] O. Lauscher and M. Reuter, Fractal spacetime structure in asymptotically safe gravity, JHEP10 (2005) 050 [hep-th/0508202] [INSPIRE]. · Zbl 1125.83006
[100] M. Reuter and F. Saueressig, Asymptotic safety, fractals, and cosmology, Lect. Notes Phys.863 (2013) 185 [arXiv:1205.5431]. · Zbl 1263.83016
[101] S. Carlip, Dimension and dimensional reduction in quantum gravity, Universe5 (2019) 83 [arXiv:1904.04379] [INSPIRE]. · Zbl 1373.83002
[102] C. Pagani and H. Sonoda, Products of composite operators in the exact renormalization group formalism, PTEP2018 (2018) 023B02 [arXiv:1707.09138] [INSPIRE]. · Zbl 07407856
[103] M. Becker and C. Pagani, Geometric operators in the asymptotic safety scenario for quantum gravity, Phys. Rev.D 99 (2019) 066002 [arXiv:1810.11816] [INSPIRE].
[104] M. Becker and C. Pagani, Geometric operators in the Einstein-Hilbert truncation, Universe5 (2019) 75.
[105] M. Becker, C. Pagani and O. Zanusso, Fractal geometry of higher derivative gravity, arXiv:1911.02415 [INSPIRE].
[106] N. Klitgaard and R. Loll, Introducing quantum Ricci curvature, Phys. Rev.D 97 (2018) 046008 [arXiv:1712.08847] [INSPIRE].
[107] N. Klitgaard and R. Loll, Implementing quantum Ricci curvature, Phys. Rev.D 97 (2018) 106017 [arXiv:1802.10524] [INSPIRE].
[108] M. Reuter and C. Wetterich, Effective average action for gauge theories and exact evolution equations, Nucl. Phys.B 417 (1994) 181 [INSPIRE].
[109] M. Demmel, F. Saueressig and O. Zanusso, Fixed functionals in asymptotically safe gravity, in proceedings of the 13^thMarcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG13), July 1-7, Stockholm, Sweden (2015), arXiv:1302.1312 [INSPIRE]. · Zbl 1388.83105
[110] J.A. Dietz and T.R. Morris, Background independent exact renormalization group for conformally reduced gravity, JHEP04 (2015) 118 [arXiv:1502.07396] [INSPIRE]. · Zbl 1388.83106
[111] G.P. De Brito et al., Asymptotic safety and field parametrization dependence in the f (R) truncation, Phys. Rev.D 98 (2018) 026027 [arXiv:1805.09656] [INSPIRE].
[112] N. Ohta, R. Percacci and A.D. Pereira, \( f\left(R,{R}_{\mu \nu}^2\right)\) at one loop, Phys. Rev.D 97 (2018) 104039 [arXiv:1804.01608] [INSPIRE].
[113] K.G. Falls, D.F. Litim and J. Schröder, Aspects of asymptotic safety for quantum gravity, Phys. Rev.D 99 (2019) 126015 [arXiv:1810.08550] [INSPIRE].
[114] N. Alkofer, Asymptotically safe f (R)-gravity coupled to matter II: Global solutions, Phys. Lett.B 789 (2019) 480 [arXiv:1809.06162] [INSPIRE]. · Zbl 1406.83014
[115] J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys.322 (2007) 2831 [hep-th/0512261] [INSPIRE]. · Zbl 1132.81041
[116] Y. Igarashi, K. Itoh and H. Sonoda, Realization of symmetry in the ERG approach to quantum field theory, Prog. Theor. Phys. Suppl.181 (2010) 1 [arXiv:0909.0327] [INSPIRE]. · Zbl 1187.81006
[117] C. Pagani, Note on scaling arguments in the effective average action formalism, Phys. Rev.D 94 (2016) 045001 [arXiv:1603.07250] [INSPIRE].
[118] U. Ellwanger, Flow equations and BRS invariance for Yang-Mills theories, Phys. Lett.B 335 (1994) 364 [hep-th/9402077] [INSPIRE].
[119] M. D’Attanasio and T.R. Morris, Gauge invariance, the quantum action principle and the renormalization group, Phys. Lett.B 378 (1996) 213 [hep-th/9602156] [INSPIRE].
[120] D.F. Litim and J.M. Pawlowski, Flow equations for Yang-Mills theories in general axial gauges, Phys. Lett.B 435 (1998) 181 [hep-th/9802064] [INSPIRE].
[121] A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Annals Phys.324 (2009) 414 [arXiv:0805.2909] [INSPIRE]. · Zbl 1161.83343
[122] D.F. Litim, Optimization of the exact renormalization group, Phys. Lett.B 486 (2000) 92 [hep-th/0005245] [INSPIRE].
[123] D.F. Litim, Optimized renormalization group flows, Phys. Rev.D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].
[124] M. Reuter and F. Saueressig, Fractal space-times under the microscope: a renormalization group view on Monte Carlo data, JHEP12 (2011) 012 [arXiv:1110.5224] [INSPIRE]. · Zbl 1306.83026
[125] J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, The nonperturbative quantum de Sitter universe, Phys. Rev.D 78 (2008) 063544 [arXiv:0807.4481] [INSPIRE]. · Zbl 1371.83066
[126] J. Ambjørn et al., Impact of topology in causal dynamical triangulations quantum gravity, Phys. Rev.D 94 (2016) 044010 [arXiv:1604.08786] [INSPIRE].
[127] B. Knorr and F. Saueressig, Towards reconstructing the quantum effective action of gravity, Phys. Rev. Lett.121 (2018) 161304 [arXiv:1804.03846] [INSPIRE].
[128] D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept.388 (2003) 279 [hep-th/0306138] [INSPIRE]. · Zbl 1042.81093
[129] J.W. York, Jr., Conformatlly invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial value problem of general relativity, J. Math. Phys.14 (1973) 456 [INSPIRE]. · Zbl 0259.53014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.