×

The strong Lefschetz property for quadratic reverse lexicographic ideals. (English) Zbl 07881506

Summary: Consider ideals \(I\) of the form \[ I=(x_1^2,\dots,x_n^2)+\operatorname{RLex}(x_ix_j) \] where \(\operatorname{RLex}(x_ix_j)\) is the ideal generated by all the square-free monomials which are greater than or equal to \(x_ix_j\) in the reverse lexicographic order. We will determine some interesting properties regarding the shape of the Hilbert series of \(I\). Using a theorem of Lindsey [Proc. Amer. Math. Soc. 139 (2011), no. 1, 79-92], this allows for a short proof that any algebra defined by \(I\) has the strong Lefschetz property when the underlying field is of characteristic zero. Building on recent work by Phuong and Tran [Colloq. Math. 173 (2023), no. 1, 1-8], this result is then extended to fields of sufficiently high positive characteristic. As a consequence, this shows that for any possible number of minimal generators for an artinian quadratic ideal there exists such an ideal minimally generated by that many monomials and defining an algebra with the strong Lefschetz property.

MSC:

13E10 Commutative Artinian rings and modules, finite-dimensional algebras
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes

Software:

Macaulay2; GitHub

References:

[1] Altafi, Nasrin, Monomial ideals and the failure of the strong Lefschetz property, Collect. Math., 383-390, 2022 · Zbl 1498.13001 · doi:10.1007/s13348-021-00324-7
[2] Altafi, Nasrin, Forcing the weak Lefschetz property for equigenerated monomial ideals, Trans. Amer. Math. Soc. Ser. B, 540-566, 2024 · Zbl 1539.13003 · doi:10.1090/btran/170
[3] Boij, Mats, On the shape of a pure \(O\)-sequence, Mem. Amer. Math. Soc., viii+78 pp., 2012 · Zbl 1312.13001 · doi:10.1090/S0065-9266-2011-00647-7
[4] Br\"{a}nd\'{e}n, Petter, Handbook of enumerative combinatorics. Unimodality, log-concavity, real-rootedness and beyond, Discrete Math. Appl. (Boca Raton), 437-483, 2015, CRC Press, Boca Raton, FL · Zbl 1327.05051
[5] Dao, Hailong, On the Lefschetz property for quotients by monomial ideals containing squares of variables, Comm. Algebra, 1260-1270, 2024 · Zbl 1539.13048 · doi:10.1080/00927872.2023.2260012
[6] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at math.uiuc.edu/Macaulay2.
[7] Hara, Masao, The determinants of certain matrices arising from the Boolean lattice, Discrete Math., 5815-5822, 2008 · Zbl 1157.06002 · doi:10.1016/j.disc.2007.09.055
[8] Harima, Tadahito, The weak and strong Lefschetz properties for Artinian \(K\)-algebras, J. Algebra, 99-126, 2003 · Zbl 1018.13001 · doi:10.1016/S0021-8693(03)00038-3
[9] Iarrobino, Anthony A., Log-concave Gorenstein sequences, J. Commut. Algebra, 25-36, 2024 · Zbl 07823245 · doi:10.1216/jca.2024.16.25
[10] Migliore, Juan C., Monomial ideals, almost complete intersections and the weak Lefschetz property, Trans. Amer. Math. Soc., 229-257, 2011 · Zbl 1210.13019 · doi:10.1090/S0002-9947-2010-05127-X
[11] Lindsey, Melissa, A class of Hilbert series and the strong Lefschetz property, Proc. Amer. Math. Soc., 79-92, 2011 · Zbl 1219.13001 · doi:10.1090/S0002-9939-2010-10498-7
[12] Migliore, Juan, Survey article: a tour of the weak and strong Lefschetz properties, J. Commut. Algebra, 329-358, 2013 · Zbl 1285.13002 · doi:10.1216/JCA-2013-5-3-329
[13] Migliore, Juan, The weak Lefschetz property for quotients by quadratic monomials, Math. Scand., 41-60, 2020 · Zbl 1446.13012 · doi:10.7146/math.scand.a-116681
[14] Hop D. Nguyen and Quang Hoa Tran, The weak Lefschetz property of artinian algebras associated to paths and cycles, Preprint, 2310.14368, 2023.
[15] Lisa Nicklasson. Maximal rank properties, a Macaualy2 package. Available at github.com/LisaNicklasson/MaximalRankProperties-Macaulay2-package.
[16] Nicklasson, Lisa, The strong Lefschetz property of monomial complete intersections in two variables, Collect. Math., 359-375, 2018 · Zbl 1423.13083 · doi:10.1007/s13348-017-0209-3
[17] Phuong, Ho V. N., A new proof of Stanley’s theorem on the strong Lefschetz property, Colloq. Math., 1-8, 2023 · Zbl 1530.13019 · doi:10.4064/cm8987-11-2022
[18] Reid, Les, On complete intersections and their Hilbert functions, Canad. Math. Bull., 525-535, 1991 · Zbl 0757.13005 · doi:10.4153/CMB-1991-083-9
[19] Stanley, Richard P., Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods, 168-184, 1980 · Zbl 0502.05004 · doi:10.1137/0601021
[20] Watanabe, Junzo, Commutative algebra and combinatorics. The Dilworth number of Artinian rings and finite posets with rank function, Adv. Stud. Pure Math., 303-312, 1985, North-Holland, Amsterdam · Zbl 0648.13010 · doi:10.2969/aspm/01110303
[21] Zanello, Fabrizio, Log-concavity of level Hilbert functions and pure o-sequences, J. Commut. Algebra, 245-256, 2024 · Zbl 07866056 · doi:10.1216/jca.2024.16.245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.