×

The strong Lefschetz property of monomial complete intersections in two variables. (English) Zbl 1423.13083

A graded algebra \(A=\bigoplus_{i\geq 0} A_i\) is said to have the strong Lefschetz property if there is a linear form such that multiplication by any power of this linear form has maximal rank in every degree.
The present paper classifies the monomial complete intersections in two variables and of positive characteristic, which have the strong Lefschetz property.
This result, together with the previous works [R. P. Stanley, SIAM J. Algebraic Discrete Methods 1, 168–184 (1980; Zbl 0502.05004); M. Lindsey, Proc. Am. Math. Soc. 139, No. 1, 79–92 (2011; Zbl 1219.13001); D. Cook II, J. Algebra 369, 42–58 (2012; Zbl 1271.13010); S. Lundqvist and L. Nicklasson, J. Algebra 521, 213–234 (2019; Zbl 1409.13003)] gives a complete classification of the monomial complete intersections with the strong Lefschetz property.

MSC:

13C40 Linkage, complete intersections and determinantal ideals
13F20 Polynomial rings and ideals; rings of integer-valued polynomials

References:

[1] Brenner, H; Kaid, A, Syzygy bundles on \({\mathbb{P}}^2\) and the weak Lefschetz property, Ill. J. Math., 51, 1299-1308, (2007) · Zbl 1148.13007
[2] Brenner, H, Looking out for stable Syzygy bundles, Adv. Math., 219, 401-427, (2008) · Zbl 1166.13007 · doi:10.1016/j.aim.2008.04.009
[3] Bruns, W., Herzog, J.: Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1998) · Zbl 0909.13005 · doi:10.1017/CBO9780511608681
[4] Clark, T., Cooper, S., Fløystad, G., et al.: Progress in Commutative Algebra 1. Combinatorics and Homology. De Gruyter, Boston (2012)
[5] Cook, D, The Lefschetz properties of monomial complete intersections in positive characteristic, J. Algebra, 369, 42-58, (2012) · Zbl 1271.13010 · doi:10.1016/j.jalgebra.2012.07.015
[6] Han, C.: The Hilbert-Kunz function of a diagonal hypersurface. Ph.D. thesis, Brandeis University (1991)
[7] Kunz, E, Characterizations of regular local rings of characteristic \(p\), Am. J. Math., 91, 772-784, (1969) · Zbl 0188.33702 · doi:10.2307/2373351
[8] Lindsey, M, A class of Hilbert series and the strong Lefschetz property, Proc. Am. Math. Soc., 139, 79-92, (2011) · Zbl 1219.13001 · doi:10.1090/S0002-9939-2010-10498-7
[9] Lundqvist , S., Nicklasson, L.: On the structure of monomial complete intersections in positive characteristic. arXiv:1604.06820 · Zbl 1409.13003
[10] Monsky, P, Mason’s theorem and Syzygy gaps, J. Algebra, 303, 373-381, (2006) · Zbl 1106.13013 · doi:10.1016/j.jalgebra.2005.10.012
[11] Snyder, N, An alternate proof of mason’s theorem, Elem. der Math., 55, 93-94, (2000) · Zbl 1031.11012 · doi:10.1007/s000170050074
[12] Stanley, R, Weyl groups, the hard Lefschetz theorem and the sperner property, SIAM J. Algebr. Discret. Methods, 1, 168-184, (1980) · Zbl 0502.05004 · doi:10.1137/0601021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.