×

Entropy stable discontinuous Galerkin methods for balance laws in non-conservative form: applications to the Euler equations with gravity. (English) Zbl 07578914

Summary: In this work a non-conservative balance law formulation is considered that encompasses the rotating, compressible Euler equations for dry atmospheric flows. We develop a semi-discretely entropy stable discontinuous Galerkin method on curvilinear meshes using a generalization of flux differencing for numerical fluxes in fluctuation form. The method uses the skew-hybridized formulation of the element operators to ensure that, even in the presence of under-integration on curvilinear meshes, the resulting discretization is entropy stable. Several atmospheric flow test cases in one, two, and three dimensions confirm the theoretical entropy stability results as well as show the high-order accuracy and robustness of the method.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
35Lxx Hyperbolic equations and hyperbolic systems

Software:

SpECTRE

References:

[1] Abdelfattah, A.; Barra, V.; Beams, N.; Bleile, R.; Brown, J.; Camier, J. S.; Carson, R.; Chalmers, N.; Dobrev, V.; Dudouit, Y., GPU algorithms for efficient exascale discretizations, Parallel Comput., Article 102841 pp. (2021)
[2] Abdi, D. S.; Wilcox, L. C.; Warburton, T. C.; Giraldo, F. X., A GPU-accelerated continuous and discontinuous Galerkin non-hydrostatic atmospheric model, Int. J. High Perform. Comput. Appl., 33, 1, 81-109 (2019)
[3] Baldauf, M., A horizontally explicit, vertically implicit (HEVI) discontinuous Galerkin scheme for the 2-dimensional Euler and Navier-Stokes equations using terrain-following coordinates, J. Comput. Phys., 446, Article 110,635 pp. (2021) · Zbl 07516454
[4] Baldauf, M.; Brdar, S., An analytic solution for linear gravity waves in a channel as a test for numerical models using the non-hydrostatic, compressible Euler equations, Q. J. R. Meteorol. Soc., 139, 677, 1977-1989 (2013)
[5] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F.; Munz, C. D., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int. J. Numer. Methods Fluids, 76, 8, 522-548 (2014)
[6] Biswas, B.; Kumar, H.; Yadav, A., Entropy stable discontinuous Galerkin methods for ten-moment Gaussian closure equations, J. Comput. Phys., 431, Article 110,148 pp. (2021) · Zbl 07511459
[7] Blaise, S.; Lambrechts, J.; Deleersnijder, E., A stabilization for three-dimensional discontinuous Galerkin discretizations applied to nonhydrostatic atmospheric simulations, Int. J. Numer. Methods Fluids, 81, 9, 558-585 (2016)
[8] Bohm, M.; Winters, A. R.; Gassner, G. J.; Derigs, D.; Hindenlang, F.; Saur, J., An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: theory and numerical verification, J. Comput. Phys., 422, Article 108,076 pp. (2020) · Zbl 07508372
[9] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867 (2014) · Zbl 1457.65140
[10] Carpenter, M. H.; Kennedy, C. A., Fourth-order 2N-storage Runge-Kutta schemes (1994)
[11] Castro, M. J.; Fjordholm, U. S.; Mishra, S.; Pares, C., Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems, SIAM J. Numer. Anal., 51, 3, 1371-1391 (2013) · Zbl 1317.65167
[12] Castro, M. J.; de Luna, T. M.; Parés, C., Well-Balanced Schemes and Path-Conservative Numerical Methods, Handbook of Numerical Analysis, vol. 18, 131-175 (2017), Elsevier · Zbl 1368.65131
[13] Chan, J., On discretely entropy conservative and entropy stable discontinuous Galerkin methods, J. Comput. Phys., 362, 346-374 (2018) · Zbl 1391.76310
[14] Chan, J., Skew-symmetric entropy stable modal discontinuous Galerkin formulations, J. Sci. Comput., 81, 1, 459-485 (2019) · Zbl 1466.65123
[15] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 5, 1252-1286 (2013) · Zbl 1373.76121
[16] Chen, T.; Shu, C. W., Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461 (2017) · Zbl 1380.65253
[17] Chertock, A.; Cui, S.; Kurganov, A.; Özcan, Ş. N.; Tadmor, E., Well-balanced schemes for the Euler equations with gravitation: conservative formulation using global fluxes, J. Comput. Phys., 358, 36-52 (2018) · Zbl 1381.76316
[18] Coquel, F.; Marmignon, C.; Rai, P.; Renac, F., An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 431, Article 110,135 pp. (2021) · Zbl 07511452
[19] Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der mathematischen Wissenschaften, vol. 325 (2010), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1196.35001
[20] Derigs, D.; Winters, A. R.; Gassner, G. J.; Walch, S., A novel averaging technique for discrete entropy-stable dissipation operators for ideal MHD, J. Comput. Phys., 330, 624-632 (2017) · Zbl 1378.76131
[21] Duan, J.; Tang, H., High-order accurate entropy stable nodal discontinuous Galerkin schemes for the ideal special relativistic magnetohydrodynamics, J. Comput. Phys., 421, Article 109,731 pp. (2020) · Zbl 1537.76180
[22] Fischer, P.; Mullen, J., Filter-based stabilization of spectral element methods, C. R. Acad. Sci., I Math., 332, 3, 265-270 (2001) · Zbl 0990.76064
[23] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[24] Gassner, G. J., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253 (2013) · Zbl 1275.65065
[25] Gassner, G. J.; Winters, A. R., A novel robust strategy for discontinuous Galerkin methods in computational fluid mechanics: why? when? what? where?, Front. Phys., 8, 612 (2021)
[26] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280
[27] Giraldo, F. X., An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases - Analysis, Algorithms, and Applications, vol. 24 (2020), Springer · Zbl 1451.65004
[28] Giraldo, F. X.; Kelly, J. F.; Constantinescu, E. M., Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA), SIAM J. Sci. Comput., 35, 5, B1162-B1194 (2013) · Zbl 1280.86008
[29] Giraldo, F. X.; Restelli, M., A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases, J. Comput. Phys., 227, 8, 3849-3877 (2008) · Zbl 1194.76189
[30] Hesthaven, J. S.; Warburton, T., Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 181, 1, 186-221 (2002) · Zbl 1014.78016
[31] Ismail, F.; Roe, P. L., Affordable, entropy-consistent Euler flux functions II: entropy production at shocks, J. Comput. Phys., 228, 15, 5410-5436 (2009) · Zbl 1280.76015
[32] Kidder, L. E.; Field, S. E.; Foucart, F.; Schnetter, E.; Teukolsky, S. A.; Bohn, A.; Deppe, N.; Diener, P.; Hébert, F.; Lippuner, J., SpECTRE: a task-based discontinuous Galerkin code for relativistic astrophysics, J. Comput. Phys., 335, 84-114 (2017) · Zbl 1380.65274
[33] Kolev, T.; Fischer, P.; Min, M.; Dongarra, J.; Brown, J.; Dobrev, V.; Warburton, T.; Tomov, S.; Shephard, M. S.; Abdelfattah, A., Efficient exascale discretizations: high-order finite element methods, Int. J. High Perform. Comput. Appl., Article 10943420211020803 pp. (2021)
[34] Kopriva, D., Implementing Spectral Methods for Partial Differential Equations (2009), Springer: Springer New York · Zbl 1172.65001
[35] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 3, 301-327 (2006) · Zbl 1178.76269
[36] Kopriva, D. A.; Gassner, G. J., An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems, SIAM J. Sci. Comput., 36, 4, A2076-A2099 (2014) · Zbl 1303.65086
[37] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226, 1, 879-896 (2007) · Zbl 1125.65091
[38] Liu, Y.; Shu, C. W.; Zhang, M., Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes, J. Comput. Phys., 354, 163-178 (2018) · Zbl 1380.76162
[39] Luo, J.; Xu, K.; Liu, N., A well-balanced symplecticity-preserving gas-kinetic scheme for hydrodynamic equations under gravitational field, SIAM J. Sci. Comput., 33, 5, 2356-2381 (2011) · Zbl 1232.76044
[40] Marras, S.; Kelly, J. F.; Moragues, M.; Müller, A.; Kopera, M. A.; Vázquez, M.; Giraldo, F. X.; Houzeaux, G.; Jorba, O., A review of element-based Galerkin methods for numerical weather prediction: finite elements, spectral elements, and discontinuous Galerkin, Arch. Comput. Methods Eng., 23, 4, 673-722 (2016) · Zbl 1360.86004
[41] Mengaldo, G.; De Grazia, D.; Moxey, D.; Vincent, P. E.; Sherwin, S. J., Dealiasing techniques for high-order spectral element methods on regular and irregular grids, J. Comput. Phys., 299, 56-81 (2015) · Zbl 1352.65396
[42] Müller, A.; Kopera, M. A.; Marras, S.; Wilcox, L. C.; Isaac, T.; Giraldo, F. X., Strong scaling for numerical weather prediction at petascale with the atmospheric model NUMA, Int. J. High Perform. Comput. Appl., 33, 2, 411-426 (2019)
[43] Qiu, J.; Shu, C. W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26, 3, 907-929 (2005) · Zbl 1077.65109
[44] Ranocha, H., Comparison of some entropy conservative numerical fluxes for the Euler equations, J. Sci. Comput., 76, 1, 216-242 (2018) · Zbl 1397.65151
[45] Ranocha, H., Generalised summation-by-parts operators and variable coefficients, J. Comput. Phys., 362, 20-48 (2018) · Zbl 1395.65054
[46] Ranocha, H.; Sayyari, M.; Dalcin, L.; Parsani, M.; Ketcheson, D. I., Relaxation Runge-Kutta methods: fully discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations, SIAM J. Sci. Comput., 42, 2, A612-A638 (2020) · Zbl 1432.76207
[47] Renac, F., Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows, J. Comput. Phys., 382, 1-26 (2019) · Zbl 1451.76073
[48] Renac, F., Entropy stable, robust and high-order DGSEM for the compressible multicomponent Euler equations, J. Comput. Phys., 445, Article 110,584 pp. (2021) · Zbl 07515844
[49] Rojas, D.; Boukharfane, R.; Dalcin, L.; Fernández, D. C.D. R.; Ranocha, H.; Keyes, D. E.; Parsani, M., On the robustness and performance of entropy stable collocated discontinuous Galerkin methods, J. Comput. Phys., 426, Article 109,891 pp. (2021) · Zbl 07510039
[50] Schaal, K.; Bauer, A.; Chandrashekar, P.; Pakmor, R.; Klingenberg, C.; Springel, V., Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement, Mon. Not. R. Astron. Soc., 453, 4, 4278-4300 (2015)
[51] Skamarock, W. C.; Ong, H.; Klemp, J. B., A fully compressible nonhydrostatic deep-atmosphere equations solver for MPAS, Mon. Weather Rev., 149, 2, 571-583 (2021)
[52] Smolarkiewicz, P. K.; Pudykiewicz, J. A., A class of semi-Lagrangian approximations for fluids, J. Atmos. Sci., 49, 22, 2082-2096 (1992)
[53] Smolarkiewicz, P. K.; Szmelter, J., Iterated upwind schemes for gas dynamics, J. Comput. Phys., 228, 1, 33-54 (2009) · Zbl 1277.76065
[54] Svärd, M., Entropy stable boundary conditions for the Euler equations, J. Comput. Phys., 426, Article 109,947 pp. (2021) · Zbl 07510061
[55] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., 49, 179, 91-103 (1987) · Zbl 0641.65068
[56] Taylor, M. A.; Guba, O.; Steyer, A.; Ullrich, P. A.; Hall, D. M.; Eldrid, C., An energy consistent discretization of the nonhydrostatic equations in primitive variables, J. Adv. Model. Earth Syst., 12, 1 (2020)
[57] Thomas, P.; Lombard, C., Geometric conservation law and its application to flow computations on moving grids, AIAA J., 17, 10, 1030-1037 (1979) · Zbl 0436.76025
[58] Tumolo, G.; Bonaventura, L., A semi-implicit, semi-Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction, Q. J. R. Meteorol. Soc., 141, 692, 2582-2601 (2015)
[59] Ullrich, P. A.; Jablonowski, C.; Reed, K. A.; Zarzycki, C.; Lauritzen, P. H.; Nair, R. D.; Kent, J.; Verlet-Banide, A., Dynamical core model intercomparison project (DCMIP2016) test case document (2016)
[60] Ullrich, P. A.; Melvin, T.; Jablonowski, C.; Staniforth, A., A proposed baroclinic wave test case for deep- and shallow-atmosphere dynamical cores, Q. J. R. Meteorol. Soc., 140, 682, 1590-1602 (2013)
[61] Ullrich, P. A.; Reynolds, D. R.; Guerra, J. E.; Taylor, M. A., Impact and importance of hyperdiffusion on the spectral element method: a linear dispersion analysis, J. Comput. Phys., 375, 427-446 (2018) · Zbl 1416.65360
[62] Warburton, T., A low storage curvilinear discontinuous Galerkin time-domain method for electromagnetics, (2010 URSI International Symposium on Electromagnetic Theory (2010)), 996-999
[63] Wintermeyer, N.; Winters, A. R.; Gassner, G. J.; Kopriva, D. A., An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry, J. Comput. Phys., 340, 200-242 (2017) · Zbl 1380.65291
[64] Winters, A. R.; Derigs, D.; Gassner, G. J.; Walch, S., A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations, J. Comput. Phys., 332, 274-289 (2017) · Zbl 1378.76144
[65] Yu, J.; Hesthaven, J. S., A study of several artificial viscosity models within the discontinuous Galerkin framework, Commun. Comput. Phys., 27, 5, 1309-1343 (2020) · Zbl 1491.76046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.