×

Impact and importance of hyperdiffusion on the spectral element method: a linear dispersion analysis. (English) Zbl 1416.65360

Summary: The spectral element method (SEM) is a mimetic finite element method with several properties that make it a desirable choice for numerical modeling. Although the linear dispersion properties of this method have been analyzed extensively for the case of the 1D inviscid advection equation, practical implementations of the SEM frequently employ hyperdiffusion for stabilization. As argued in this paper, hyperdiffusion has a pronounced impact on the accuracy of the discrete wave modes and the dispersive properties of the SEM. When applied with an appropriately large coefficient, hyperdiffusion is effective at removing the spectral gap and improving the stability of the 1D advection equation. This study also considers the SEM as applied to the 2D linearized shallow-water equations, where hyperdiffusion in the form of scalar diffusion, divergence damping, and vorticity damping are analyzed. To the extent possible, guidance on the choice of hyperdiffusion coefficients is provided. A brief discussion of the comparative impact of local element filtering is included.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

Software:

ICON; DYNAMICO; NICAM
Full Text: DOI

References:

[1] Ainsworth, M., Dispersive behaviour of high order finite element schemes for the one-way wave equation, J. Comput. Phys., 259, 1-10 (2014) · Zbl 1349.65433
[2] Ainsworth, M.; Wajid, H., Dispersive and dissipative behavior of the spectral element method, SIAM J. Numer. Anal., 47, 5, 3910-3937 (2009) · Zbl 1204.65137
[3] Boyd, J., The erfc-log filter and the asymptotics of the Euler and Vandeven sequence accelerations, Proceedings of the Third International Conference on Spectral and High Order Methods. Proceedings of the Third International Conference on Spectral and High Order Methods, Houston Math. J., 267-276 (1996)
[4] Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S., Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-d aspects, Geosci. Model Dev., 7, 6, 2717-2731 (2014)
[5] Cohen, G. C., Higher-Order Numerical Methods for Transient Wave Equations (2002), Springer · Zbl 0985.65096
[6] Dennis, J.; Edwards, J.; Evans, K.; Guba, O.; Lauritzen, P.; Mirin, A.; St-Cyr, A.; Taylor, M.; Worley, P., CAM-SE: a scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High Perform. Comput. Appl., 26, 1, 74-89 (2012)
[7] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-Order Methods for Incompressible Fluid Flow, vol. 9 (2002), Cambridge University Press · Zbl 1007.76001
[8] Dubos, T.; Dubey, S.; Tort, M.; Mittal, R.; Meurdesoif, Y.; Hourdin, F., DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., 8, 10, 3131-3150 (2015)
[9] Fischer, P.; Mullen, J., Filter-based stabilization of spectral element methods, C. R. Acad. Sci., Sér. 1 Math., 332, 3, 265-270 (2001) · Zbl 0990.76064
[10] Fournier, A.; Taylor, M. A.; Tribbia, J. J., The Spectral Element Atmosphere Model (SEAM): high-resolution parallel computation and localized resolution of regional dynamics, Mon. Weather Rev., 132, 3, 726-748 (2004)
[11] Gaberšek, S.; Giraldo, F. X.; Doyle, J. D., Dry and moist idealized experiments with a two-dimensional spectral element model, Mon. Weather Rev., 140, 10, 3163-3182 (2012)
[12] Giraldo, F. X., The Lagrange-Galerkin spectral element method on unstructured quadrilateral grids, J. Comput. Phys., 147, 1, 114-146 (1998) · Zbl 0920.65070
[13] Giraldo, F. X.; Kelly, J. F.; Constantinescu, E. M., Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA), SIAM J. Sci. Comput., 35, 5, B1162-B1194 (2013) · Zbl 1280.86008
[14] Girard, C.; Plante, A.; Desgagné, M.; McTaggart-Cowan, R.; Côté, J.; Charron, M.; Gravel, S.; Lee, V.; Patoine, A.; Qaddouri, A.; Roch, M.; Spacek, L.; Tanguay, M.; Vaillancourt, P.; Zadra, A., Staggered Vertical Discretization of the Canadian Environmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type, Mon. Weather Rev., 142, 1183-1196 (2014)
[15] Gottlieb, D.; Hesthaven, J. S., Spectral methods for hyperbolic problems, (Partial Differential Equations (2001), Elsevier), 83-131 · Zbl 0974.65093
[16] Guba, O.; Taylor, M.; Ullrich, P.; Overfelt, J.; Levy, M., The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity, Geosci. Model Dev., 7, 6, 2803-2816 (2014)
[17] Guerra, J. E.; Ullrich, P. A., A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models, Geosci. Model Dev., 9, 5, 2007-2029 (2016)
[18] Heikes, R. P.; Randall, D. A.; Konor, C. S., Optimized icosahedral grids: performance of finite-difference operators and multigrid solver, Mon. Weather Rev., 141, 12, 4450-4469 (2013)
[19] Hughes, T. J.; Feijóo, G. R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method - a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[20] Jablonowski, C.; Williamson, D. L., The pros and cons of diffusion, filters and fixers in atmospheric general circulation models, (Numerical Techniques for Global Atmospheric Models (2011), Springer), 381-493
[21] Kanevsky, A.; Carpenter, M. H.; Hesthaven, J. S., Idempotent filtering in spectral and spectral element methods, J. Comput. Phys., 220, 1, 41-58 (2006) · Zbl 1106.65089
[22] Kelly, J. F.; Giraldo, F. X., Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode, J. Comput. Phys., 231, 24, 7988-8008 (2012) · Zbl 1284.65134
[23] Kinnmark, I. P.; Gray, W. G., One step integration methods of third-fourth order accuracy with large hyperbolic stability limits, Math. Comput. Simul., 26, 3, 181-188 (1984) · Zbl 0539.65051
[24] Lauritzen, P. H.; Nair, R. D.; Herrington, A. R.; Callaghan, P.; Goldhaber, S.; Dennis, J. M.; Bacmeister, J.; Eaton, B.; Zarzycki, C.; Taylor, M. A.; Ullrich, P. A.; Dubos, T.; Gettelman, A.; Neale, R. B.; Dobbins, B.; Reed, K. A.; Hannay, C.; Medeiros, B.; Benedict, J. J.; Tribbia, J. J., NCAR CESM2.0 release of CAM-SE: a reformulation of the spectral-element dynamical core in dry-mass vertical coordinates with comprehensive treatment of condensates and energy, J. Adv. Model. Earth Syst. (2018), in preparation
[25] Lin, S.-J., A “vertically lagrangian” finite-volume dynamical core for global models, Mon. Weather Rev., 132, 10, 2293-2307 (2004)
[26] Ma, H., A spectral element basin model for the shallow water equations, J. Comput. Phys., 109, 133-149 (Nov. 1993) · Zbl 0790.76065
[27] Maday, Y.; Patera, A. T., Spectral element methods for the incompressible Navier-Stokes equations, (State-of-the-Art Surveys on Computational Mechanics (A90-47176 21-64) (1989), American Society of Mechanical Engineers: American Society of Mechanical Engineers New York), 71-143, research supported by DARPA
[28] Marras, S.; Kelly, J. F.; Giraldo, F. X.; Vázquez, M., Variational multiscale stabilization of high-order spectral elements for the advection-diffusion equation, J. Comput. Phys., 231, 21, 7187-7213 (2012) · Zbl 1284.65119
[29] Marras, S.; Kelly, J. F.; Moragues, M.; Müller, A.; Kopera, M. A.; Vázquez, M.; Giraldo, F. X.; Houzeaux, G.; Jorba, O., A review of element-based Galerkin methods for numerical weather prediction: finite elements, spectral elements, and discontinuous Galerkin, Arch. Comput. Methods Eng., 23, 4, 673-722 (2016) · Zbl 1360.86004
[30] Melvin, T.; Staniforth, A.; Thuburn, J., Dispersion analysis of the spectral element method, Q. J. R. Meteorol. Soc., 138, 668, 1934-1947 (2012)
[31] Nazarov, M.; Hoffman, J., Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods, Int. J. Numer. Methods Fluids, 71, 3, 339-357 (2013) · Zbl 1430.76314
[32] Patera, A. T., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54, 3, 468-488 (1984) · Zbl 0535.76035
[33] Qaddouri, A.; Lee, V., The Canadian Global Environmental Multiscale model on the Yin-Yang grid system, Q. J. R. Meteorol. Soc., 137, 660, 1913-1926 (2011)
[34] Restelli, M.; Bonaventura, L.; Sacco, R., A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows, J. Comput. Phys., 216, 1, 195-215 (2006) · Zbl 1090.76045
[35] Ruuth, S., Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math. Comput., 75, 253, 183-207 (2006) · Zbl 1080.65088
[36] Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S.-i., Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations, J. Comput. Phys., 227, 7, 3486-3514 (2008) · Zbl 1132.86311
[37] Skamarock, W. C.; Klemp, J. B.; Duda, M. G.; Fowler, L. D.; Park, S.-H.; Ringler, T. D., A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering, Mon. Weather Rev., 140, 9, 3090-3105 (2012)
[38] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., 26, 1, 30-44 (1989) · Zbl 0667.65079
[39] Taylor, M. A.; Tribbia, J.; Iskandarani, M., The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130, 1, 92-108 (1997) · Zbl 0868.76072
[40] Taylor, M. A.; Fournier, A., A compatible and conservative spectral element method on unstructured grids, J. Comput. Phys., 229, 17, 5879-5895 (2010) · Zbl 1425.76177
[41] Ullrich, P. A., A global finite-element shallow-water model supporting continuous and discontinuous elements, Geosci. Model Dev., 7, 6, 3017-3035 (2014)
[42] Ullrich, P. A., Understanding the treatment of waves in atmospheric models, part 1: the shortest resolved waves of the 1d linearized shallow-water equations, Q. J. R. Meteorol. Soc., 140, 682, 1426-1440 (2014)
[43] Ullrich, P. A.; Guerra, J. E., Exploring the effects of a high-order vertical coordinate in a non-hydrostatic global model, Proc. Comput. Sci., 51, 2076-2085 (2015)
[44] Ullrich, P. A.; Jablonowski, C.; Kent, J.; Lauritzen, P. H.; Nair, R.; Reed, K. A.; Zarzycki, C. M.; Hall, D. M.; Dazlich, D.; Heikes, R.; Konor, C.; Randall, D.; Dubos, T.; Meurdesoif, Y.; Chen, X.; Harris, L.; Kühnlein, C.; Lee, V.; Qaddouri, A.; Girard, C.; Giorgetta, M.; Reinert, D.; Klemp, J.; Park, S.-H.; Skamarock, W.; Miura, H.; Ohno, T.; Yoshida, R.; Walko, R.; Reinecke, A.; Viner, K., DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models, Geosci. Model Dev., 10, 4477-4509 (2017)
[45] Vandeven, H., Family of spectral filters for discontinuous problems, J. Sci. Comput., 6, 2, 159-192 (1991) · Zbl 0752.35003
[46] Viner, K.; Reinecke, P.; Gabersek, S.; Flagg, D.; Doyle, J.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F., Development of a three-dimensional spectral element model for NWP: idealized simulations on the sphere, (AGU Fall Meeting Abstracts (2016), American Geophysical Union, Fall General Assembly), abstract #A31A-04
[47] Zängl, G.; Reinert, D.; Rípodas, P.; Baldauf, M., The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: description of the non-hydrostatic dynamical core, Q. J. R. Meteorol. Soc., 141, 687, 563-579 (2015)
[48] Zarzycki, C. M.; Levy, M. N.; Jablonowski, C.; Overfelt, J. R.; Taylor, M. A.; Ullrich, P. A., Aquaplanet experiments using CAM’s variable-resolution dynamical core, J. Climate, 27, 14, 5481-5503 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.