×

A mathematical study of a prey-predator model in relevance to pest control. (English) Zbl 1279.92086

Summary: In this paper, we propose and analyze an ecological system consisting of pest and its natural enemy as predator. Here we also consider the role of infection to the pest population and the presence of some alternative source of food to the predator population. We analyze the dynamics of this system in a systemic manner, study the dependence of the dynamics on some vital parameters and discuss the global behavior and controllability of the proposed system. The investigation also includes the use of pesticide control to the system and finally we use Pontryagin’s maximum principle to derive the optimal pest control strategy. We also illustrate some of the key findings using numerical simulations.

MSC:

92D40 Ecology
34C23 Bifurcation theory for ordinary differential equations
49J15 Existence theories for optimal control problems involving ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Uboh, F.E., Asuquo, E.N., Eteng, M.U., Akpanyung, E.O.: Endosulfan-induces renal toxicity independent of the route of exposure in rats. Am. J. Biochem. Mol. Biol. 1(4), 359-367 (2011) · doi:10.3923/ajbmb.2011.359.367
[2] Tang, S., Xiao, Y., Chen, L., Cheke, R.A.: Integrated pest management models and their dynamical behaviour. Bull. Math. Biol. 67, 115-135 (2005) · Zbl 1334.91058 · doi:10.1016/j.bulm.2004.06.005
[3] Ghosh, S., Bhattacharyya, S., Bhattacharya, D.K.: The role of viral infection in pest control: a mathematical study. Bull. Math. Biol. 69, 2649-2691 (2007) · Zbl 1245.92054 · doi:10.1007/s11538-007-9235-8
[4] Ghosh, S., Bhattacharya, D.K.: Optimization in microbial pest control: an integrated approach. Appl. Math. Model. 34, 1382-1395 (2010) · Zbl 1186.93048 · doi:10.1016/j.apm.2009.08.026
[5] Yongzhen, P., Xuehuia, P., Changguo, L.: Pest regulation by means of continuous and impulsive nonlinear controls. Math. Comput. Model. 51, 810-822 (2010) · Zbl 1190.34008 · doi:10.1016/j.mcm.2009.10.013
[6] Liang, J., Tanga, S., Cheke, R.A.: An integrated pest management model with delayed responses to pesticide applications and its threshold dynamics. Nonlinear Anal., Real World Appl. 13, 2352-2374 (2012) · Zbl 1388.92032 · doi:10.1016/j.nonrwa.2012.02.003
[7] Apreutesei, N.C.: An optimal control problem for a pest, predator, and plant system. Nonlinear Anal., Real World Appl. 13, 1391-1400 (2012) · Zbl 1239.49049 · doi:10.1016/j.nonrwa.2011.11.004
[8] Kar, T.K., Ghorai, A., Jana, S.: Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide. J. Theor. Biol. 310, 187-198 (2012) · Zbl 1337.92180 · doi:10.1016/j.jtbi.2012.06.032
[9] Kaustrak, E.: Microbial and Viral Pesticide. Marcel and Dekker, New York, Bessel (1982)
[10] Halis, R.S.: In: British Crop Protection Council Symposium on Proceedings, vol. 68, pp. 53-62 (1997)
[11] Bhattacharyya, S., Bhattacharya, D.K.: Pest control through viral disease: mathematical modeling and analysis. J. Theor. Biol. 238(1), 177-196 (2006) · Zbl 1445.92310 · doi:10.1016/j.jtbi.2005.05.019
[12] Zhang, H., Chen, L., Nieto, J.J.: A delayed epidemic model with stage-structure and pulses for pest management strategy. Nonlinear Anal., Real World Appl. 9, 1714-1726 (2008) · Zbl 1154.34394 · doi:10.1016/j.nonrwa.2007.05.004
[13] Boethel, D.J., Eikenbary, R.D.: Interactions of Plant Resistance and Parasitoids and Predator of Insects. Wiley, Chichester (1986)
[14] DeBach, P.: Biological Control of Insect Pests and Weeds. Chapman & Hall, London (1964)
[15] Burges, H.D., Hussey, N.W.: Microbial Control of Insects and Mites. Academic Press, New York (1971)
[16] Anderson, R.M., May, R.M.: Regulation and stability of host-parasite interactions. I. Regulatory processes. J. Anim. Ecol. 47, 219-247 (1978) · doi:10.2307/3933
[17] Anderson, R.M., May, R.M.: The population dynamics of microparasite and their invertebrate hosts. Proc. R. Soc. Lond. B 291, 451-524 (1981)
[18] Tan, Y., Chen, L.: Modelling approach for biological control of insect pest by releasing infected pest. Chaos Solitons Fractals 39, 304-315 (2009) · Zbl 1197.34011 · doi:10.1016/j.chaos.2007.01.098
[19] Wang, X., Song, X.: Mathematical models for the control of a pest population by infected pest. Comput. Math. Appl. 56, 266-278 (2008) · Zbl 1145.92339 · doi:10.1016/j.camwa.2007.12.015
[20] Hadeler, K.P., Freedman, H.I.: Predator-prey populations with parasitic infection. J. Math. Biol. 27, 609-631 (1989) · Zbl 0716.92021 · doi:10.1007/BF00276947
[21] Venturino, E.; Arino, O. (ed.); Axelrod, D. (ed.); Kimmel, M. (ed.); Langlais, M. (ed.), Epidemics in predator-prey models: disease among the prey, No. 1, 381-393 (1995), Winnipeg
[22] Venturino, E.: Epidemics in predator-prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185-205 (2002) · Zbl 1014.92036 · doi:10.1093/imammb/19.3.185
[23] Kar, T.K., Mondal, P.K.: A mathematical study on the dynamics of an eco-epidemiological model in the presence of delay. Appl. Appl. Math. 7(1), 300-333 (2012) · Zbl 1253.37084
[24] Jana, S., Kar, T.K.: Modeling and analysis of a prey-predator system with disease in the prey. Chaos Solitons Fractals 47, 42-53 (2013) · Zbl 1258.92038 · doi:10.1016/j.chaos.2012.12.002
[25] Liu, X., Wang, C.: Bifurcation of a predator-prey model with disease in the prey. Nonlinear Dyn. 62, 841-850 (2010) · Zbl 1215.37053 · doi:10.1007/s11071-010-9766-7
[26] Zhang, T., Meng, X., Song, Y.: The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments. Nonlinear Dyn. 64, 1-12 (2011) · Zbl 1280.34078 · doi:10.1007/s11071-010-9840-1
[27] Yongzhen, P., Shuping, L., Changguo, L.: Effect of delay on a predator-prey model with parasitic infection. Nonlinear Dyn. 63, 311-321 (2011) · doi:10.1007/s11071-010-9805-4
[28] Wang, X., Tao, Y., Song, X.: Analysis of pest-epidemic model by releasing diseased pest with impulsive transmission. Nonlinear Dyn. 65, 175-185 (2011) · Zbl 1234.92059 · doi:10.1007/s11071-010-9882-4
[29] Wang, T., Chen, L.: Nonlinear analysis of a microbial pesticide model with impulsive state feedback control. Nonlinear Dyn. 65, 1-10 (2011) · Zbl 1235.93108 · doi:10.1007/s11071-010-9828-x
[30] Guo, H., Chen, L.: Time-limited pest control of a Lotka-Volterra model with impulsive harvest. Nonlinear Anal., Real World Appl. 10, 840-848 (2009) · Zbl 1167.34306 · doi:10.1016/j.nonrwa.2007.11.007
[31] Gopal, M., Gupta, A., Sathiamma, B., Nair, C.P.R.: Control of the coconut pest oryctes rhinoceros L. Using the oryctes virus. Insect Sci. Appl. 21(2), 93-101 (2001)
[32] Pahari, U.K., Kar, T.K.: Conservation of a resource based fishery through optimal taxation. Nonlinear Dyn. 72, 591-603 (2013) · Zbl 1268.91134 · doi:10.1007/s11071-012-0737-z
[33] Srinivasu, P.D.N., Prasad, B.S.R.V.: Role of quantity of additional food to the predator as a control in predator-prey system with relevance to pest management and biological conservation. Bull. Math. Biol. 73, 2249-2276 (2011) · Zbl 1334.92369 · doi:10.1007/s11538-010-9601-9
[34] Srinivasu, P.D.N., Prasad, B.S.R.V., Venkatesulu, M.: Biological control through provision of additional food to predators: a theoretical study. Theor. Popul. Biol. 72, 111-120 (2007) · Zbl 1123.92039 · doi:10.1016/j.tpb.2007.03.011
[35] Harwood, J. D.; Obryeki, J. J.; Hoddle, M. S. (ed.), The role of alternative prey in sustaining predator populations, 4253-4462 (2005)
[36] Sabelis, M. W.; Rijn, P. C.J.; Hoddle, M. S. (ed.), When does alternative food promote biological pest control?, 428-437 (2005)
[37] Abrams, P.A., Walters, C.J.: Invulnerable prey and the paradox of enrichment. Ecology 77(4), 1125-1133 (1996) · doi:10.2307/2265581
[38] Georgescu, P., Zhang, H.: An impulsively controlled predator-pest model with disease in the pest. Nonlinear Anal., Real World Appl. 11, 270-287 (2010) · Zbl 1192.34057 · doi:10.1016/j.nonrwa.2008.10.060
[39] Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. Springer, New York (1983) · Zbl 0515.34001
[40] Kar, T.K., Mondal, P.K.: Global dynamics and bifurcation in delayed SIR epidemic model. Nonlinear Anal., Real World Appl. 12, 2058-2068 (2011) · Zbl 1235.34216 · doi:10.1016/j.nonrwa.2010.12.021
[41] Joshi, H.R.: Optimal control of an HIV immunology model. Optim. Control Appl. Methods 23, 199-213 (2002) · Zbl 1072.92509 · doi:10.1002/oca.710
[42] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962) · Zbl 0102.32001
[43] Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1990) · Zbl 0712.90018
[44] Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Mathematical and Computational Biology Series. Chapman & Hall/CRC, London (2007) · Zbl 1291.92010
[45] Bodine, E.N., Gross, L.J., Lenhart, S.: Optimal control applied to a model for species augmentation. Math. Biosci. Eng. 5(4), 669-680 (2008) · Zbl 1153.49037 · doi:10.3934/mbe.2008.5.669
[46] Kar, T.K., Batabyal, A.: Stability analysis and optimal control of an SIR epidemic model with vaccination. Biosystems 104, 127-135 (2011) · doi:10.1016/j.biosystems.2011.02.001
[47] Kar, T.K., Jana, S.: Application of three controls optimally in a vector-borne disease—a mathematical study. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2868-2884 (2013) · Zbl 1306.92059 · doi:10.1016/j.cnsns.2013.01.022
[48] Lukes, D. L., Differential equations: classical to controlled, No. 162 (1982), New York · Zbl 0509.34003
[49] Chakraborty, K., Jana, S., Kar, T.K.: Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting. Appl. Math. Comput. 218, 9271-9290 (2012) · Zbl 1246.92026 · doi:10.1016/j.amc.2012.03.005
[50] Jung, E., Lenhart, S., Feng, Z.: Optimal control of treatments in a two-strain tuberculosis model. Discrete Contin. Dyn. Syst., Ser. B 2-4, 473-482 (2002) · Zbl 1005.92018
[51] Kar, T.K., Ghosh, B.: Sustainability and optimal control of an exploited prey predator system through provision of alternative food to predator. Biosystems 109, 220-232 (2012) · doi:10.1016/j.biosystems.2012.02.003
[52] Kar, T.K., Jana, S.: A theoretical study on mathematical modelling of an infectious disease with application of optimal control. Biosystems 111, 37-50 (2013) · doi:10.1016/j.biosystems.2012.10.003
[53] Birkoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.