×

An impulsively controlled predator-pest model with disease in the pest. (English) Zbl 1192.34057

The authors consider an integrated pest management model with disease in the pest and a stage structure for its natural predator, which is the subject to impulsive and periodic controls. A nonlinear incidence rate expressed in an abstract form, is used to describe the propagation of the disease. Sufficient conditions for the local and global stability of the susceptible pest-eradication periodic solution are found by means of Floquet theory and comparison methods, the permanence of the system is also discussed. The stability conditions are shown to be biologically significant, they are reformulated as balance conditions for the susceptible pest class.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34A37 Ordinary differential equations with impulses
34D05 Asymptotic properties of solutions to ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations
92D30 Epidemiology
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Nagai, K.; Yano, E., Predation by Orius sauteri (Poppius) (Heteroptera: Anthocoridae) on Thrips palmi Karny (Thysanoptera: Thripidae). Functional response and selective predation, Appl. Entomol. Zool., 35, 565-574 (2000)
[2] Port, C. M.; Scopes, N. E.A., Biological control by predatory mites (Phytoseiulus persimilis Athias-Henriot) of red spider mite (Tetranychus urticae Koch) infesting strawberries grown in walk-in plastic tunnels, Plant Pathology, 30, 95-99 (1981)
[3] D. Grzywacz, M. Parnell, G. Kibata, G. Oduor, W. Ogutu, D. Miano, D. Winstanley, The development of endemic baculoviruses of Plutella xylostella (diamondback moth, DBM) for control of DBM in East Africa, in: The Management of Diamondback Moth and other Cruciferous Pests, in: N. Endersby, P. Ridland (Eds.), Proceedings of the Fourth International Workshop on Diamondback Moth, Melbourne University, 2001, pp. 179-183; D. Grzywacz, M. Parnell, G. Kibata, G. Oduor, W. Ogutu, D. Miano, D. Winstanley, The development of endemic baculoviruses of Plutella xylostella (diamondback moth, DBM) for control of DBM in East Africa, in: The Management of Diamondback Moth and other Cruciferous Pests, in: N. Endersby, P. Ridland (Eds.), Proceedings of the Fourth International Workshop on Diamondback Moth, Melbourne University, 2001, pp. 179-183
[4] Sarfraz, M.; Keddie, A.; Dosdall, L., Biological control of the diamondback moth, Plutella xylostella: A review, Biocontrol Sci. Tech., 15, 763-789 (2005)
[5] R. Roush, Insecticide resistance management in diamondback moth: quo vadis? In: The management of diamondback moth and other crucifer pests, in: A. Sivapragasam, W.H. Loke, A.K. Hussan, G.S. Lim (Eds.), Proceedings of the Third International Workshop, Kuala Lumpur, Malaysia, Malaysian Agricultural Research and Development Institute (MARDI), 1997, pp. 21-24; R. Roush, Insecticide resistance management in diamondback moth: quo vadis? In: The management of diamondback moth and other crucifer pests, in: A. Sivapragasam, W.H. Loke, A.K. Hussan, G.S. Lim (Eds.), Proceedings of the Third International Workshop, Kuala Lumpur, Malaysia, Malaysian Agricultural Research and Development Institute (MARDI), 1997, pp. 21-24
[6] V.M. Stern, R.F. Smith, R. van den Bosch, K.S. Hagen, The integrated control concept, Hilgardia, 29, 1959, pp. 81-101; V.M. Stern, R.F. Smith, R. van den Bosch, K.S. Hagen, The integrated control concept, Hilgardia, 29, 1959, pp. 81-101
[7] Y. Tan, L. Chen, Modelling approach for biological control of insect pest by releasing infected pest, Chaos Solitons Fractals, in press (doi:10.1016/j.chaos.2007.01.098; Y. Tan, L. Chen, Modelling approach for biological control of insect pest by releasing infected pest, Chaos Solitons Fractals, in press (doi:10.1016/j.chaos.2007.01.098 · Zbl 1197.34011
[8] Aiello, W. G.; Freedman, H. I., A time-delay model of single species growth with stage structure, Math. Biosci., 101, 139-153 (1990) · Zbl 0719.92017
[9] Wang, W., Global dynamics of a population model with stage structure for predator, (Chen, L.; etal., Advanced Topics in Biomathematics. Advanced Topics in Biomathematics, Proceedings of the International Conference on Mathematical Biology (1997), World Scientific Publishing Co., Pte. Ltd.), 253-257 · Zbl 0986.92026
[10] Xiao, Y. N.; Chen, L., Global stability of a predator-prey system with stage structure for predator, Acta Math. Sin. (Engl. Ser.), 20, 63-70 (2004) · Zbl 1062.34056
[11] Kuang, Y., Basic properties of mathematical population models, J. Biomath., 17, 129-142 (2002)
[12] Arditi, R.; Michalski, J., Nonlinear food web models and their response to increased basal productivity, (Polis, G. A.; Winemiller, K. O., Food Webs: Integration of Patterns and Dynamics (1996), Chapman and Hall: Chapman and Hall New York), 122-133
[13] Liu, S.; Chen, L.; Agarwal, R., Recent progress on stage-structured population dynamics, Math. Comput. Modelling, 36, 1319-1360 (2002) · Zbl 1077.92516
[14] Tang, S.; Cheke, R. A., State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50, 257-292 (2005) · Zbl 1080.92067
[15] Tang, S.; Xiao, Y.; Chen, L.; Cheke, R. A., Integrated pest management models and their dynamical behaviour, Bull. Math. Biol., 67, 115-135 (2005) · Zbl 1334.91058
[16] Liu, B.; Zhi, Y.; Chen, L., The dynamics of a predator-prey model with Ivlev’s functional response concerning integrated pest management, Acta Math. Appl. Sin. Engl. Ser., 20, 133-146 (2004) · Zbl 1062.92071
[17] Liu, B.; Chen, L.; Zhang, Y., The dynamics of a prey-dependent consumption model concerning impulsive control strategy, Appl. Math. Comput., 169, 305-320 (2005) · Zbl 1074.92042
[18] Su, H.; Dai, B.; Chen, Y.; Li, K., Dynamic complexities of a predator-prey model with generalized Holling type III functional response and impulsive effects, Comput. Math. Appl., 56, 1715-1725 (2008) · Zbl 1152.34309
[19] Georgescu, P.; Moroşanu, G., Pest regulation by means of impulsive controls, Appl. Math. Comput., 190, 790-803 (2007) · Zbl 1117.93006
[20] Xiao, Y.; van den Bosch, F., The dynamics of an eco-epidemic model with biological control, Ecological Modelling, 168, 203-214 (2003)
[21] Y. Du, R. Xu, L. Duan, Dynamics of a stage-structured predator-prey model concerning impulsive control strategy, J. Biol. Sys. (in press); Y. Du, R. Xu, L. Duan, Dynamics of a stage-structured predator-prey model concerning impulsive control strategy, J. Biol. Sys. (in press) · Zbl 1342.92165
[22] Zhang, H.; Chen, L.; Nieto, J., A delayed epidemic model with stage-structure and pulses for pest management strategy, Nonlinear Anal. RWA, 9, 1714-1726 (2008) · Zbl 1154.34394
[23] R. Shi, X. Jiang, L. Chen, A predator-prey model with disease in the prey and two impulses for integrated pest management, Appl. Math. Modelling, in press (doi:10.1016/j.apm.2008.06.001; R. Shi, X. Jiang, L. Chen, A predator-prey model with disease in the prey and two impulses for integrated pest management, Appl. Math. Modelling, in press (doi:10.1016/j.apm.2008.06.001 · Zbl 1185.34015
[24] Li, M. Y.; Smith, H.; Wang, L., Global dynamics of an SEIR model with vertical transmission, SIAM J. Appl. Math., 62, 58-69 (2001) · Zbl 0991.92029
[25] Ebert, D.; Lipsitch, M.; Mangin, K. L., The effect of parasites on host population density and extinction: Experimental epidemiology with Daphnia and six microparasites, Amer. Naturalist, 156, 459-477 (2000)
[26] Tudor, D., A deterministic model for herpes infections in human and animal populations, SIAM Rev., 32, 136-139 (1990) · Zbl 0692.92018
[27] Rost, G.; Wu, J., SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5, 389-402 (2008) · Zbl 1165.34421
[28] Hethcote, H. W.; Wang, W.; Han, L.; Ma, Z., A predator-prey model with infected prey, Theor. Pop. Biol., 66, 259-268 (2004)
[29] Arino, J.; Davis, J. R.; Hartley, D.; Jordan, R.; Miller, J. M.; van den Driessche, P., A multi-species epidemic model with spatial dynamics, Math. Med. Biol., 22, 129-142 (2005) · Zbl 1076.92045
[30] De Leenheer, P.; Smith, H. L., Virus dynamics: A global analysis, SIAM J. Appl. Math., 63, 1313-1327 (2003) · Zbl 1035.34045
[31] Gourley, S.; Kuang, Y.; Nagy, J. D., Dynamics of a delay differential model of hepatitis B virus infection, J. Biol. Dynam., 2, 140-153 (2008) · Zbl 1140.92014
[32] Capasso, V.; Serio, G., A generalization of Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42, 43-61 (1978) · Zbl 0398.92026
[33] Ruan, S.; Wang, W., Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188, 135-163 (2003) · Zbl 1028.34046
[34] Liu, W. M.; Levin, S. A.; Iwasa, Y., Influence of nonlinear incidence rates on the behavior of SIRS epidemiological models, J. Math. Biol., 23, 187-204 (1986) · Zbl 0582.92023
[35] Derrick, W. R.; van den Driessche, P., A disease transmission model in a nonconstant population, J. Math. Biol., 31, 495-512 (1993) · Zbl 0772.92015
[36] Korobeinikov, A.; Maini, P. K., Non-linear incidence and stability of infectious disease models, Math. Med. Biol., 22, 113-128 (2005) · Zbl 1076.92048
[37] Moghadas, S. M.; Alexander, M. E., Bifurcations of an epidemic model with non-linear incidence and infection-dependent removal rate, Math. Med. Biol., 23, 231-254 (2006) · Zbl 1098.92058
[38] Yodzis, P., Predator-prey theory and management of multispecies fisheries, Ecol. Appl., 4, 51-58 (1994)
[39] Arditi, R.; Ginzburg, L. R., Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139, 311-326 (1989)
[40] Holling, C. S., The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Canada, 45, 1-60 (1965)
[41] Ivlev, V. S., Experimental Ecology of the Feeding of Fishes (1961), Yale University Press: Yale University Press New Haven
[42] Jiao, J.; Chen, L.; Nieto, J.; Torres, A., Permanence and global attractivity of stage-structure predator-prey model with continuous harvesting on predator and impulsive stocking on prey, Appl. Math. Mech., 29, 653-663 (2008), English Edition · Zbl 1231.34021
[43] Wang, W.; Shen, J.; Nieto, J., Permanence and periodic solution of predator-prey system with Holling type functional response and impulses, Discrete Dyn. Nat. Soc., 2007 (2007), Article ID 81756, 15 pages · Zbl 1146.37370
[44] Ding, X.; Lu, C.; Liu, M., Periodic solution for a semi-ratio-dependent predator-prey system with nonmonotonic functional response and time delay, Nonlinear Anal. RWA, 9, 762-775 (2008) · Zbl 1152.34046
[45] Yan, J.; Zhao, A.; Nieto, J., Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems, Math. Comput. Modelling, 40, 509-518 (2004) · Zbl 1112.34052
[46] Meng, X.; Chen, L.; Li, Q., The dynamics of an impulsive delay predator-prey system with variable coefficients, Appl. Math. Comput., 198, 361-374 (2008) · Zbl 1133.92029
[47] Tang, S.; Xiao, Y.; Cheke, R. A., Multiple attractors of host-parasitoid models with integrated pest management strategies: Eradication, persistence and outbreak, Theor. Pop. Biol., 73, 181-197 (2008) · Zbl 1208.92093
[48] Apreutesei, N., Necessary optimality conditions for a Lotka-Volterra three species system, Math. Modelling Nat. Phenomena, 1, 123-135 (2006) · Zbl 1201.92058
[49] Apreutesei, N.; Dimitriu, G., Optimal control for Lotka-Volterra systems with a hunter population, (Lecture Notes in Computer Science, vol. 4818 (2008), Springer Verlag: Springer Verlag Berlin), 277-284 · Zbl 1229.92070
[50] Bunimovich-Mendrazitsky, S.; Byrne, H.; Stone, L., Mathematical model of pulsed immunotherapy for superficial bladder cancer, Bull. Math. Biol., 70, 2055-2076 (2008) · Zbl 1147.92013
[51] Gao, S.; Teng, Z.; Nieto, J.; Torres, A., Analysis of an SIR epidemic model with pulse vaccination and distributed time delay, J. Biomed. Biotechnol., 2007 (2007), Article ID 64870, 10 pages
[52] Z. Xiang, Y. Li, X. Song, Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy, Nonlinear Anal. RWA, in press (doi:10.1016/j.nonrwa.2008.04.017; Z. Xiang, Y. Li, X. Song, Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy, Nonlinear Anal. RWA, in press (doi:10.1016/j.nonrwa.2008.04.017 · Zbl 1163.92332
[53] Jiao, J.; Meng, X.; Chen, L., Global attractivity and permanence of a stage-structured pest management SI model with time delay and diseased pest impulsive transmission, Chaos Solitons Fractals, 38, 658-668 (2008) · Zbl 1146.34322
[54] Zhang, H.; Georgescu, P.; Chen, L., On the impulsive controllability and bifurcation of a predator-pest model of IPM, Biosystems, 93, 151-171 (2008)
[55] Bainov, D.; Simeonov, P., Impulsive Differential Equations: Periodic Solutions and Applications (1993), Longman, John Wiley: Longman, John Wiley New York, NY · Zbl 0815.34001
[56] Georgescu, P.; Zhang, H.; Chen, L., Bifurcation of nontrivial periodic solutions for an impulsively controlled pest management model, Appl. Math. Comput., 202, 675-687 (2008) · Zbl 1151.34037
[57] P. Georgescu, H. Zhang, The onset of positive periodic solutions for a biochemical pest management model, J. Appl. Math. Comput., in press (doi:10.1007/s12190-008-0172-y; P. Georgescu, H. Zhang, The onset of positive periodic solutions for a biochemical pest management model, J. Appl. Math. Comput., in press (doi:10.1007/s12190-008-0172-y · Zbl 1179.37071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.