×

A control approach for monotone systems with multi-valued characteristics: application to an ebola virus model. (English) Zbl 1455.92082

Summary: Monotone systems are those systems whose solutions preserve an order on the initial conditions. Such systems are considered one of the most important classes of dynamical systems used in the analysis and control of mathematical biology models. This paper suggests a control approach for monotone input-output systems with multi-valued static characteristics. This class of monotone systems reveals multiple equilibrium points when constant inputs are applied. The design procedure, derived from a ‘generalized monotone small gain theorem’, results in a negative feedback law that guarantees the boundedness of the solutions and the output regulation at desired constant set-points. In addition, the proposed control method is generalized to the problems with the input and state constraints. This approach achieves control objectives without knowing or using the precise model of the system, but only through limited amount of qualitative and quantitative data provided from relatively simple experiments. To investigate the applicability of the proposed control technique, a model for the spread of Ebola virus disease is exploited. By means of the constrained control laws, the treatment aims to eventually regulate the system at the disease-free equilibrium point, at which the disease is completely eradicated.

MSC:

92C60 Medical epidemiology
93B52 Feedback control
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Angeli, D.; Sontag, E. D., Monotone control systems, IEEE Trans. Autom. Control, 48, 10, 1684-1698 (2003) · Zbl 1364.93326
[2] Angeli, D.; Enciso, G. A.; Sontag, E. D., A small-gain result for orthant-monotone systems under mixed feedback, Syst. Control Lett., 68, 9-19 (2014) · Zbl 1288.93070
[3] Agahi, H.; Yazdanpanah, M. J., Set-point regulation of constrained strongly monotone systems, IFAC Proc. Vol., 44, 1, 11030-11035 (2011)
[4] Agahi, H.; Yazdanpanah, M. J., Set-point regulation of monotone systems using the monotone small-gain theorem, IET Control Theory Appl., 7, 3, 447-454 (2013)
[5] Angeli, D.; Sontag, E. D., Multi-stability in monotone input/output systems, Syst. Control Lett., 51, 3-4, 185-202 (2004) · Zbl 1157.93509
[6] Agusto, F., Mathematical model of Ebola transmission dynamics with relapse and reinfection, Math. Biosci., 283, 48-59 (2017) · Zbl 1367.92114
[7] I. Area, F. NdaÏrou, J.J. Nieto, C.J. Silva, D.F. Torres, Ebola model and optimal control with vaccination constraints, arXiv preprint arXiv:1703.01368 (2017). · Zbl 1412.49005
[8] Bodine, E. N.; Cook, C.; Shorten, M., The potential impact of a prophylactic vaccine for Ebola in sierra leone., Math. Biosci. Eng.: MBE, 15, 2, 337-359 (2018) · Zbl 1375.92062
[9] Bonyah, E.; Badu, K.; Asiedu-Addo, S. K., Optimal control application to an Ebola model, Asian Pac. J. Trop. Biomed., 6, 4, 283-289 (2016)
[10] Blanchini, F., Set invariance in control, Automatica, 35, 11, 1747-1767 (1999) · Zbl 0935.93005
[11] Chowell, G.; Nishiura, H., Characterizing the transmission dynamics and control of Ebola virus disease, PLoS Biol., 13, 1, e1002057 (2015)
[12] R.X. Chen, H.S. Mortveit, C.M. Reidys, Garden-of-eden states and fixed points of monotone dynamical systems, arXiv preprint arXiv:1805.03163(2018).
[13] Chisci, L.; Falugi, P., Tracking control for constrained monotone systems, IFAC Proc. Vol., 38, 1, 61-66 (2005) · Zbl 1293.93283
[14] Chisci, L.; Falugi, P., Asymptotic tracking for constrained monotone systems, IEEE Trans. Autom. Control, 51, 5, 873-879 (2006) · Zbl 1366.93286
[15] De Leenheer, P.; Angeli, D.; Sontag, E. D., On predator-prey systems and small-gain theorems, Math. Biosci. Eng., 2, 1, 25-42 (2005) · Zbl 1079.34040
[16] Enciso, G.; Sontag, E. D., Monotone systems under positive feedback: multistability and a reduction theorem, Syst. Control Lett., 54, 2, 159-168 (2005) · Zbl 1129.93398
[17] Enciso, G. A.; Sontag, E. D., Global attractivity, I/O monotone small-gain theorems, and biological delay systems, Discret. Contin. Dyn. Syst., 14, 3, 549 (2006) · Zbl 1111.93071
[18] Faria, T.; Obaya, R.; Sanz, A. M., Asymptotic behaviour for a class of non-monotone delay differential systems with applications, J. Dyn. Diff. Eq., 30, 3, 911-935 (2018) · Zbl 1414.34058
[19] E. IGme, D. Siegel, A graph theoretical approach to monotonicity with respect to initial conditions, in: X. Liu, D. Siegel (Eds.), Comparison Methods and Stability Theory207-216. · Zbl 0808.34003
[20] Joseph, J. M.; Ramganesh, E., Fixed point theorem on multi-valued mappings, Int. J. Anal. Appl., 1, 2, 123-127 (2013) · Zbl 1399.54121
[21] Kabli, K.; El Moujaddid, S.; Niri, K.; Tridane, A., Cooperative system analysis of the Ebola virus epidemic model, Infect. Dis. Model., 3, 145-159 (2018)
[22] Khalil, H., Nonlinear Systems (2002), Prentice Hall · Zbl 1003.34002
[23] Legrand, J.; Grais, R. F.; Boelle, P.-Y.; Valleron, A.-J.; Flahault, A., Understanding the dynamics of Ebola epidemics, Epidemiol. Infect., 135, 4, 610-621 (2007)
[24] Malisoff, M.; Sontag, E., Asymptotic controllability and input-to-state stabilization: the effect of actuator errors, Optimal Control, Stabilization and Nonsmooth Analysis, 155-171 (2004), Springer · Zbl 1087.93050
[25] Malisoff, M.; De Leenheer, P., A small-gain theorem for motone systems with multivalued input-state characteristics, IEEE Trans. Autom. Control, 51, 2, 287-292 (2006) · Zbl 1366.93258
[26] Meyer, P.-J.; Girard, A.; Witrant, E., Controllability and invariance of monotone systems for robust ventilation automation in buildings, Proceedings of the Fifty-second IEEE Conference on Decision and Control, 1289-1294 (2013), IEEE
[27] Manguvo, A.; Mafuvadze, B., The impact of traditional and religious practices on the spread of Ebola in west africa: time for a strategic shift, Pan Afr. Med. J., 22, Suppl 1 (2015)
[28] Nadler, S. B., Multi-valued contraction mappings., Pac. J. Math., 30, 2, 475-488 (1969) · Zbl 0187.45002
[29] W.H. Organization, Ebola virus disease-democratic republic of the congo,
[30] W.H. Organization, et al., Who: Ebola situation report (2016).
[31] Rachah, A.; Torres, D. F., Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in west africa, Discr. Dyn. Nat. Soc., 2015 (2015) · Zbl 1418.92188
[32] Sootla, A.; Mauroy, A., Operator-theoretic characterization of eventually monotone systems, IEEE Control Syst. Lett. (2018)
[33] S. Sadraddini, C. Belta, Safety control of monotone systems with bounded uncertainties, arXiv preprint arXiv:1603.07419 (2016). · Zbl 1482.93189
[34] Webb, G.; Browne, C., A model of the Ebola epidemics in west africa incorporating age of infection, J. Biol. Dyn., 10, 1, 18-30 (2016) · Zbl 1448.92354
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.