×

Mathematical model of Ebola transmission dynamics with relapse and reinfection. (English) Zbl 1367.92114

Summary: The Ebola virus disease is caused by the Ebola virus which belongs to the filoviridae virus family. The 2014 outbreaks were estimated to have caused over 11,000 fatalities. In this paper, we formulate and analyze a system of ordinary differential equations which incorporates disease relapse and reinfection. The Ebola model with disease relapse and reinfection is locally-asymptotically stable when the basic reproduction number is less than unity. The model exhibits in the presence of disease reinfection, the phenomenon of backward bifurcation, where the stable disease-free equilibrium co-exists with a stable endemic equilibrium when the associated reproduction number is less than unity. The feasibility of backward bifurcation occurring increases with increasing values of both relapse and reinfection. The total number of new cases of Ebola-infected individuals increases with increasing values of the relapse and reinfection parameters. Further simulations show that Ebola transmission models that do not incorporate relapse and reinfection may under-estimate disease burden in the community. Similar under-estimation is observed in models that include only one infected and recovered classes. Using results obtained from sensitivity analysis indicates that Ebola (given disease relapse and reinfection) can be effectively curtailed in the community by using control measures with a high-effectiveness level. This strategy is more effective than either the moderate- or low-effectiveness levels.

MSC:

92D30 Epidemiology
Full Text: DOI

References:

[1] Agusto, F. B.; Gumel, A. B.; Lenhart, S.; Odoi, A., Mathematical analysis of the transmission dynamics of bovine tuberculosis model, J. Math. Methods Appl. Sci., 34, 1873-1887 (2011) · Zbl 1223.92032
[2] Agusto, F. B.; Gumel, A. B., Qualitative dynamics of lowly- and highly-pathogenic avian influenza strains, Math. Biosci., 243, 2, 147-162 (2013) · Zbl 1281.92037
[3] Agusto, F. B.; Teboh-Ewungkem, M. I.; Gumel, A. B., Mathematical assessment of the role of traditional belief systems and customs and health-care settings in the transmission dynamics of the 2014 ebola outbreaks, BMC Med., 13, 96 (2015)
[4] Althaus, C. L., Estimating the Reproduction Number of Ebola Virus (EVOB) During the 2014 Outbreak in West Africa (2014), PLOS Currents Outbreaks
[5] Anderson, R. M.; May, R., Infectious Diseases of Humans (1991), Oxford University Press: Oxford University Press New York
[6] Bausch, D. G.; Towner, J. S.; Dowell, S. F.; Kaducu, F.; Lukwiya, M.; Sanchez, A., Assessment of the risk of ebola virus transmission from bodily fluids and fomites, J. Infect. Dis., 196, Suppl. 2, S142-147 (2007)
[7] Brauer, F., Backward bifurcations in simple vaccination models, J. Math. Anal. Appl., 298, 2, 418-431 (2004) · Zbl 1063.92037
[9] Castillo-Chavez, C.; Song, B., Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1, 2, 361-404 (2004) · Zbl 1060.92041
[15] Chitnis, N.; Cushing, J. M.; Hyman, J. M., Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67, 24-45 (2006) · Zbl 1107.92047
[16] Chowell, G.; Hengartner, N. W.; Castillo-Chavez, C.; Fenimore, P. W.; Hyman, J. M., The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, 28, 503-522 (2004) · Zbl 1440.92062
[17] Deen, G. F.; Knust, B.; Broutet, N.; Sesay, F. R.; Formenty, P.; Ross, C., Ebola RNA persistence in semen of ebola virus disease survivors - preliminary report, N. Engl. J. Med., 1-7 (2015)
[18] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.P., On the definition and computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol, 28, 503-522 (1990) · Zbl 0726.92018
[19] Dushoff, J.; Wenzhang, H.; Castillo-Chavez, C., Backwards bifurcations and catastrophe in simple models of fatal diseases, J. Math. Biol., 36, 227-248 (1998) · Zbl 0917.92022
[20] Fasina, F. O.; Shittu, A.; Lazarus, D.; Tomori, O.; Simonsen, L.; Viboud, C.; Chowell, G., Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014, Eurosurveillance, 19, 40, 09 (2014)
[22] Gupta, M.; Mahanty, S.; Greer, P.; Towner, J. S.; Shieh, W. J.; Zaki, S. R., Persistent infection with ebola virus under conditions of partial immunity, J. Virol., 78, 958-967 (2004)
[23] Heffernan, R. T.; Pambo, B.; Hatchett, R. J.; Leman, P. A.; Swanepoel, R.; Ryder, R. W., Low seroprevalence of IGG antibodies to Ebola virus in an epidemic zone: Ogooue-Ivindo region, Northeastern Gabon, 1997, J. Infect. Dis., 191, 964-968 (2005)
[24] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 4, 599-653 (2000) · Zbl 0993.92033
[25] Kreuels, B.; Wichmann, D.; Emmerich, P.; Schmidt-Chanasit, J.; de Heer, G.; Kluge, S., A case of severe Ebola virus infection complicated by gram-negative septicemia, N. Engl. J. Med., 371, 2394-2401 (2014)
[26] Legrand, J.; Grais, R. F.; Boelle, P. Y.; Valleron, A. J.; Flahaut, A., Understanding the dynamics of Ebola epidemics, Epidemiol. Infect., 135, 4, 610-621 (2007)
[27] Lakshmikantham, V.; Leela, S.; Martynyuk, A. A., Stability Analysis of Nonlinear Systems (1989), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York, Basel · Zbl 0676.34003
[28] Leroy, E. M.; Baize, S.; Volchkov, V. E.; Fisher-Hoch, S. P.; Georges-Courbot, M. C.; Lansoud-Soukate, J., Human asymptomatic Ebola infection and strong inflammatory response, Lancet, 355, 2210-2215 (2000)
[29] MacIntyre, C. R.; Chughtai, A. A., Recurrence and reinfection-a new paradigm for the management of ebola virus disease, Int. J. Infect. Dis., 43, 58-61 (2015)
[30] Meltzer, M. I.; Atkins, C. Y.; Santibanez, S.; Knust, B.; Petersen, B. W.; Ervin, E. D.; Nichol, S. T.; Damon, I. K.; Washington, M. L., Estimating the future number of cases in the ebola epidemic Liberia and Sierra Leone, 2014-2015, Morb. Mortal. Wkly. Rep., 63, 03, 1-14 (2014)
[31] Niger, A. M.; Gumel, A. B., Mathematical analysis of the role of repeated exposure on malaria transmission dynamics, Differ. Equ. Dyn. Syst., 16, 251-287 (2008) · Zbl 1181.34056
[32] Nishiura, H.; Chowell, G., Early transmission dynamics of ebola virus disease (EVD), West Africa, Eurosurveillance, 19, 36 (2014)
[33] Nuño, M.; Reichert, T. A.; Chowell, G.; Gumel, A. B., Protecting residential care facilities from pandemic influenza, Proc. Natl. Acad. Soc., 105, 30, 10625-10630 (2008)
[34] Rodriguez, L. L.; De Roo, A.; Guimard, Y.; Trappier, S. G.; Sanchez, A.; Bressler, D., Persistence and genetic stability of ebola virus during the outbreak in kikwit, democratic republic of the congo., J. Infect. Dis., 179, Suppl. 1, S170-176 (1995)
[35] Rowe, A. K.; Bertolli, J.; Khan, A. S.; Mukunu, R.; Muyembe-Tamfum, J. J.; Bressler, D., Clinical, virologic, and immunologic follow-up of convalescent ebola hemorrhagic fever patients and their household contacts, kikwit, democratic republic of the congo, J. Infect. Dis., 179, Suppl. 1, S28-35 (1999)
[36] Sobarzo, A.; Eskira, Y.; Herbert, A. S.; Kuehne, A. I.; Stonier, S. W.; Ochayon, D. E., Immune memory to sudan virus: comparison between two separate disease outbreaks, Viruses, 7, 37-51 (2015)
[37] Strong, J. E.; Wong, G.; Jones, S. E.; Grolla, A.; Theriault, S.; Kobinger, G. P., Stimulation of ebola virus production from persistent infection through activation of the ras/MAPK pathway, Proc. Natl. Acad. Soc., 105, 17982-17987 (2008)
[38] Towers, S.; Patterson-Lomba, O.; Castillo-Chavez, C., Temporal Variations in the Effective Reproduction Number of the 2014 West Africa Ebola Outbreak (2014), PLOS Currents Outbreaks
[39] Qiu, X.; Audet, J.; Wong, G.; Fernando, L.; Bello, A.; Pillet, S., Sustained protection against ebola virus infection following treatment of infected nonhuman primates with ZMAb, Sci. Rep., 3, 3365 (2013)
[40] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[41] Varkey, J. B.; Shantha, J. G.; Crozier, I.; Kraft, C. S.; Lyon, G. M.; Mehta, A. K., Persistence of ebola virus in ocular fluid during convalescence, N. Engl. J. Med., 372, 25, 2423-2427 (2015)
[43] WHO Ebola Response Team, Ebola virus disease in west Africa the first 9 months of the epidemic and forward projections, N. Engl. J. Med., 371, 1481-1495 (2014)
[47] Zaleta, C.; Velasco-Hernandez, J., A simple vaccination model with multiple endemic state, Math. Biosci., 164, 183-201 (2000) · Zbl 0954.92023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.