×

Painlevé V for a Jacobi unitary ensemble with random singularities. (English) Zbl 1485.34214

A special solution of the fifth Painlevé equation is represented by an integral of orthogonal polynomials.
The authors start from a perturbed Jacobi weight \[ w(z;t)=(1-z^2)^\alpha \exp \left[ - \frac{t}{z^2-k^2} \right], \quad k\in [-1,1], \] for \(\alpha, t>0\). Let \(P_n(z;t)\) be a monic orthogonal polynomials of degree \(n\) in \(z\) with respect to \(w(z;t)\): \[ \int_{-1}^1 P_n(z;t)P_m(z;t) w(z;t) \, dz =h_n(t)\delta_{n,m} \quad m, n = 0, 1, 2,\dots. \] By using the ladder operator approach, they show that an auxiliary function \[ R_n(t)= \frac{2t} {h_n(t) } \int_{-1}^1 \frac{1}{z^2 -k^2 }P_n(z;t)^2 w(z;t) \, dz \] satisfy a recurrence relation and \( \Phi_n(t)= R_n(t)/ ( 2n+ \alpha +1) +1 \) is a solution of a particular fifth Painlevé equation.

MSC:

34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
33C47 Other special orthogonal polynomials and functions

References:

[1] Magnus, A., Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials, J. Comput. Appl. Math., 57, 215-237 (1995) · Zbl 0828.42012
[2] Chen, Y.; Its, A., Painlevé III and a singular linear statistics in hermitian random matrix ensembles, I, J. Approx. Theor., 162, 270-297 (2010) · Zbl 1189.33035
[3] Chen, M.; Chen, Y., Singular linear statistics of the laguerre unitary ensemble and Painlevé III. Double scaling analysis, J. Math. Phys., 56, Article 063506 pp. (2015) · Zbl 1351.33019
[4] Boelen, L.; van Assche, W., Discrete Painlevé equations for recurrence relations of semiclassical Laguerre polynomials, Proc. Amer. Math. Soc., 138, 1317-1331 (2011) · Zbl 1187.39012
[5] Clarkson, P. A.; Jordaan, K., The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation, Constr. Approx., 39, 223-254 (2014) · Zbl 1321.34115
[6] Filipuk, G.; van Assche, W.; Zhang, L., The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation, J. Phys. A, 45, Article 205201 pp. (2012) · Zbl 1253.33012
[7] Clarkson, P. A.; Jordaan, K.; Kelil, A., A generalized Freud weight, Stud. Appl. Math., 136, 288-320 (2016) · Zbl 1336.33022
[8] Chen, Y.; Feigin, M. V., Painlevé IV and degenerate Gaussian unitary ensembles, J. Phys. A: Math. Gen., 39, 12381-12393 (2006) · Zbl 1108.15023
[9] Basor, E.; Chen, Y.; Ehrhardt, T., Painlevé V and time-dependent Jacobi polynomials, J. Phys. A, 43, Article 015204 pp. (2010) · Zbl 1202.33030
[10] Zhan, L.; Blower, G.; Chen, Y.; Zhu, M., Center of mass distribution of the Jacobi unitary ensembles: Painlevé V, asymptotic expansions, J. Math. Phys., 59, Article 103301 pp. (2018) · Zbl 1402.60012
[11] Chen, Y.; Dai, D., Painlevé V and a Pollaczek-Jacobi type orthogonal polynomials, J. Approx. Theor., 162, 2149-2167 (2010) · Zbl 1221.33015
[12] Forrester, P. J.; Witte, N. S., The distribution of the first eigenvalue spacing at the hard edge of the Laguerre unitary ensemble, Kyushu J. Math., 61, 457-526 (2007) · Zbl 1145.15014
[13] Min, C.; Chen, Y., Painlevé V and the Hankel determinant for a singularly perturbed Jacobi weight, Nuclear Phys. B, 961, Article 115221 pp. (2020) · Zbl 1479.37068
[14] Basor, E.; Chen, Y.; Mekareeya, N., The Hilbert series of \(\mathcal{N} = 1 S O ( N_c )\) and \(S_p ( N_c )\) SQCD, Painlevé VI and integrable systems, Nuclear Phys. B, 860, 421-463 (2012) · Zbl 1246.81419
[15] Dai, D.; Zhang, L., Painlevé VI and Hankel determinants for the generalized Jacobi weight, J. Phys. A, 43, Article 055207 pp. (2010) · Zbl 1196.33018
[16] Chen, Y.; Ismail, M. E.H., Ladder operators and differential equations for orthogonal polynomials, J. Phys. A: Math. Gen., 30, 7817-7829 (1997) · Zbl 0927.33011
[17] Gromak, V. I.; Laine, I.; Shimomura, S., Painlevé Differential Equations in the Complex Plane (2002), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 1043.34100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.