×

Discrete-to-continuum convergence of charged particles in 1D with annihilation. (English) Zbl 1502.35160

The authors consider a system of charged particles moving on the real line driven by electrostatic interactions. They write the system as \(\frac{dx_{i} }{dt}=\frac{1}{n}\sum_{j=1,j\neq i}^{n}\frac{b_{i}b_{j}}{x_{i}-x_{j}}\), \( t\in (0,T)\), \(i=1,\ldots ,n\). Here \(n\geq 2\) is the number of particles, \( x=(x_{1},\ldots ,x_{n})\) are the particle positions in \(\mathbb{R}\), and \( b=(b_{1},\ldots ,b_{n})\) are the charges of the particles, initially set as +1 or -1. The authors impose an annihilation rule: Each \(b_{i}\) jumps at most once and if \(b_{i}\) jumps at \(t\in \lbrack 0,T]\), then \(t\in S\), a finite subset in \((0,T]\), \(\left\vert b_{i}(t-)\right\vert |=1\) and \( b_{i}(t)=0\). Moreover, for all \((\tau ,y)\in S\times \mathbb{R}\), \( \sum_{i:x_{i}(\tau )=y}\left[ \left[ b_{i}(\tau )\right] \right] =0\), where the bracket \(\left[ \left[ f\right] \right] (t)\) means the difference between the right and left limits of \(f\) at \(t\). The initial conditions \( (x(0),b(0))=(x^\circ,b^\circ)\) are imposed with \(b^\circ \in \{-1,0,+1\}^{n}\) and \((x^\circ,b^\circ)\in \mathcal{Z}_{n}=\{(x,b)\in \mathbb{R}^{n}\times \{-1,0,+1\}^{n}:\) if \( i>j\) and \(b_{i}b_{j}\neq 0\), then \(x_{i}>x_{j}\}\). The authors define a solution to this problem as a map \((x,b):[0,T]\rightarrow \mathcal{Z}_{n}\) such that there exists a finite subset \(S\subset (0,T]\) and for each \(i\in \{1,n\}\), \(x_{i}\in C([0,T])\cap C^{1}([0,T]\setminus S)\), and \(b_{1},\ldots ,b_{n}:[0,T]\rightarrow \{-1,0,1\}\) are right-continuous, the initial conditions and the annihilation rule are satisfied, and the above ordinary differential system is satisfied on \((0,T)\setminus S\). The authors prove that this system of equations is well posed, that is solutions exist, are unique, and depend continuously on the initial data. In addition they are Lipschitz continuous in time with respect to a metric \(d_{M}\) based on the moments \(M_{k}(x)=.\frac{1}{k}\sum_{i=1}^{n}x_{i}^{k}\), \(k=1,\ldots ,n\), through \(d_{M}(x,y)=\left\Vert M(x)-M(y)\right\Vert _{2}\), with \( Mx):=(M_{1}(x),\ldots ,M_{n}(x))^{T}\). They prove a Lipschitz property of this distance. The purpose of the paper is to establish the ”continuum limit” to this problem as \(n\rightarrow \infty \). The main result proves that if the initial data satisfy \(u^\circ_{n}\rightarrow u^\circ\) uniformly, and \(u^\circ\) is bounded and uniformly continuous, then \(u_{n}\rightarrow u\) locally uniformly in time-space as \(n\rightarrow \infty \), the function \(u\) is continuous and satisfies the Hamilton-Jacobi equation given formally by \( \partial _{t}u=\mathit{I}[u]\left\vert \partial _{x}u\right\vert \), where \(- \mathit{I}\) is a Lévy operator of order 1 defined as \(\mathit{I} [u](x)=-(-\Delta )^{1/2}u(x)\). For the proof, the authors introduce approximations through a small parameter \(\varepsilon >0\) and \(\rho \)-sub- and \(\rho \)-super-solutions with \(\rho >0\), to the approximate problem and they pass to the limit when \(\varepsilon \rightarrow 0\), then when \(n \rightarrow \infty\).

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
78A35 Motion of charged particles
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35F21 Hamilton-Jacobi equations
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games

References:

[1] Alicandro, R.; De Luca, L.; Garroni, A.; Ponsiglione, M., Metastability and dynamics of discrete topological singularities in two dimensions: a \(\Gamma \)-convergence approach, Arch. Ration. Mech. Anal., 214, 1, 269-330 (2014) · Zbl 1305.82013
[2] Alicandro, R.; De Luca, L.; Garroni, A.; Ponsiglione, M., Dynamics of discrete screw dislocations on glide directions, J. Mech. Phys. Solids, 92, 87-104 (2016) · Zbl 1482.74132
[3] Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag, New York (2008) · Zbl 1145.35001
[4] Ambrosio, L., Mainini, E., Serfaty, S.: Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices. Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 28, pp. 217-246. Elsevier (2011). · Zbl 1233.49022
[5] Berdichevsky, VL, On thermodynamics of crystal plasticity, Scr. Mater., 54, 5, 711-716 (2006)
[6] Biler, P.; Karch, G.; Monneau, R., Nonlinear diffusion of dislocation density and self-similar solutions, Commun. Math. Phys., 294, 1, 145-168 (2010) · Zbl 1207.82049
[7] Bogachev, VI, Measure Theory (2007), Berlin: Springer, Berlin · Zbl 1120.28001
[8] Bogachev, VI, Weak Convergence of Measures (2018), Providence: American Mathematical Society, Providence · Zbl 1412.60003
[9] Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.)27(1), 1-67, 1992 · Zbl 0755.35015
[10] Crandall, MG; Lions, P-L, Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277, 1, 1-42 (1983) · Zbl 0599.35024
[11] Cermelli, P.; Leoni, G., Renormalized energy and forces on dislocations, SIAM J. Math. Anal., 37, 4, 1131-1160 (2005) · Zbl 1141.74023
[12] Chambolle, A.; Morini, M.; Ponsiglione, M., Nonlocal curvature flows, Arch. Ration. Mech. Anal., 218, 3, 1263-1329 (2015) · Zbl 1328.35166
[13] Di Francesco, M., Esposito, A., Schmidtchen, M.: Many-particle limit for a system of interaction equations driven by Newtonian potentials. ArXiv:2008.11106 (2020) · Zbl 1462.35017
[14] Di Francesco, M.; Fagioli, S., Measure solutions for non-local interaction pdes with two species, Nonlinearity, 26, 10, 2777 (2013) · Zbl 1278.35003
[15] Di Francesco, M.; Fagioli, S., A nonlocal swarm model for predators-prey interactions, Math. Models Methods Appl. Sci., 26, 2, 319-355 (2016) · Zbl 1334.35357
[16] Duerinckx, M., Mean-field limits for some Riesz interaction gradient flows, SIAM J. Math. Anal., 48, 3, 2269-2300 (2016) · Zbl 1348.82050
[17] Focardi, M.; Garroni, A., A 1D macroscopic phase field model for dislocations and a second order \(\Gamma \)-limit, Multiscale Model. Simul., 6, 4, 1098-1124 (2007) · Zbl 1152.82308
[18] Forcadel, N.; Imbert, C.; Monneau, R., Homogenization of the dislocation dynamics and of some particle systems with two-body interactions, Discrete Contin. Dyn. Syst. A, 23, 3, 785-826 (2009) · Zbl 1154.35306
[19] Groma, I.; Balogh, P., Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation, Acta Mater., 47, 13, 3647-3654 (1999)
[20] Groma, I.; Csikor, FF; Zaiser, M., Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Mater., 51, 5, 1271-1281 (2003)
[21] Groma, I.; Györgyi, G.; Kocsis, B., Debye screening of dislocations, Phys. Rev. Lett., 96, 16 (2006)
[22] Giga, Y.: Surface Evolution Equations. Monographs in Mathematics. A Level Set Approach, vol. 99. Birkhäuser Verlag, Basel (2006) · Zbl 1096.53039
[23] Geers, MGD; Peerlings, RHJ; Peletier, MA; Scardia, L., Asymptotic behaviour of a pile-up of infinite walls of edge dislocations, Arch. Ration. Mech. Anal., 209, 495-539 (2013) · Zbl 1282.74067
[24] Garroni, A.; van Meurs, P.; Peletier, MA; Scardia, L., Convergence and non-convergence of many-particle evolutions with multiple signs, Arch. Ration. Mech. Anal., 235, 1, 3-49 (2020) · Zbl 1434.82082
[25] Hall, CL, Asymptotic analysis of a pile-up of regular edge dislocation walls, Mater. Sci. Eng. A, 530, 144-148 (2011)
[26] Hauray, M., Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19, 8, 1357-1384 (2009) · Zbl 1188.35126
[27] Hull, D.; Bacon, DJ, Introduction to Dislocations (2001), Oxford: Butterworth Heinemann, Oxford
[28] Head, AK; Louat, N., The distribution of dislocations in linear arrays, Aust. J. Phys., 8, 1, 1-7 (1955) · Zbl 0068.40801
[29] Hirth, JP; Lothe, J., Theory of Dislocations (1982), New York: Wiley, New York · Zbl 1365.82001
[30] Hudson, T.; Ortner, C., Existence and stability of a screw dislocation under anti-plane deformation, Arch. Ration. Mech. Anal., 213, 3, 887-929 (2014) · Zbl 1342.82146
[31] Hiriart-Urruty, J-B; Lemaréchal, C., Convex Analysis and Minimization Algorithms (1996), Berlin: Springer, Berlin · Zbl 0795.49001
[32] Hudson, T., van Meurs, P., Peletier, M.A.: Atomistic origins of continuum dislocation dynamics. ArXiv:2001.06120 (2020) · Zbl 1460.60107
[33] Imbert, C.; Monneau, R.; Rouy, E., Homogenization of first order equations with (u/\( \varepsilon )\)-periodic Hamiltonians-part II: application to dislocations dynamics, Commun. Partial Differ. Equ., 33, 3, 479-516 (2008) · Zbl 1143.35005
[34] Ishii, H., Souganidis, P.: Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor. Tohoku Math. J. (2)47(2), 227-250, 1995 · Zbl 0837.35066
[35] Jakobsen, ER; Karlsen, KH, Continuous dependence estimates for viscosity solutions of integro-PDEs, J. Differ. Equ., 212, 2, 278-318 (2005) · Zbl 1082.45008
[36] Kooiman, M.; Hütter, M.; Geers, MGD, Effective mobility of dislocations from systematic coarse-graining, J. Stat. Mech., 2015, 6, P06005 (2015) · Zbl 1456.82895
[37] Monneau, R.; Patrizi, S., Derivation of Orowan’s law from the Peierls-Nabarro model, Commun. Partial Differ. Equ., 37, 10, 1887-1911 (2012) · Zbl 1255.35215
[38] Monneau, R.; Patrizi, S., Homogenization of the Peierls-Nabarro model for dislocation dynamics, J. Differ. Equ., 253, 7, 2064-2105 (2012) · Zbl 1264.35264
[39] Mora, MG; Peletier, MA; Scardia, L., Convergence of interaction-driven evolutions of dislocations with Wasserstein dissipation and slip-plane confinement, SIAM J. Math. Anal., 49, 5, 4149-4205 (2017) · Zbl 1378.49012
[40] Ohnuma, M.; Sato, K., Singular degenerate parabolic equations with applications to the \(p\)-Laplace diffusion equation, Comm. Partial Differential Equations, 22, 3-4, 381-411 (1997) · Zbl 0990.35077
[41] Petrache, M.; Serfaty, S., Next order asymptotics and renormalized energy for Riesz interactions, J. Inst. Math. Jussieu, 16, 3, 501-569 (2017) · Zbl 1373.82013
[42] Patrizi, S.; Valdinoci, E., Crystal dislocations with different orientations and collisions, Arch. Ration. Mech. Anal., 217, 1, 231-261 (2015) · Zbl 1321.35234
[43] Patrizi, S., Valdinoci, E.: Relaxation times for atom dislocations in crystals. Calc. Var. Partial Differ. Equ.55(3), Art. 71, 44, 2016 · Zbl 1348.82084
[44] Sayah, A., Équations d’Hamilton-Jacobi du premier ordre avec termes intégro-différentiels, Commun. Partial Differ. Equ., 16, 6-7, 1057-1074 (1991) · Zbl 0742.45004
[45] Smets, D.; Bethuel, F.; Orlandi, G., Quantization and motion law for Ginzburg-Landau vortices, Arch. Ration. Mech. Anal., 183, 2, 315-370 (2007) · Zbl 1105.76062
[46] Schochet, S., The point-vortex method for periodic weak solutions of the 2-D Euler equations, Commun. Pure Appl. Math., 49, 9, 911-965 (1996) · Zbl 0862.35092
[47] Serfaty, S.: Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow. Part II: the dynamics. J. Eur. Math. Soc.9(3), 383-426, 2007 · Zbl 1137.35005
[48] Slepčev, D., Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions, Nonlinear Anal., 52, 1, 79-115 (2003) · Zbl 1028.35068
[49] van Meurs, P.; Muntean, A., Upscaling of the dynamics of dislocation walls, Adv. Math. Sci. Appl., 24, 2, 401-414 (2014) · Zbl 1326.74110
[50] van Meurs, P.; Morandotti, M., Discrete-to-continuum limits of particles with an annihilation rule, SIAM J. Appl. Math., 79, 5, 1940-1966 (2019) · Zbl 1428.82041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.